Calculating Yukawa Couplings in
 Heterotic Calabi-Yau Models

Andre Lukas

University of Oxford
$(0,2)$ workshop, 30 May - 3 June, 2016, Paris
in collaboration with: Evgeny Buchbinder, Philip Candelas, Andrei Constantin, James Gray, Stefan Blesneag
based on: 1512.05322 and 1606.nnnnn to appear

Outline

- Introduction: Heterotic Yukawa couplings
- Yukawa couplings for co-dimension one CYs
- Generalisation and a vanishing theorem
- Examples
- Yukawa unification?
- An example for Yukawa unification
- Conclusion

Introduction: Heterotic Yukawa couplings

- Consider heterotic string on CY 3-fold X
- observable bundle $V \rightarrow X$ with structure group $H \subset E_{8}$
- low-energy gauge group $G=\mathcal{C}_{E_{8}}(H)$
- matter multiplets from associated bundles $E_{i} \rightarrow X, i=1,2,3$

Matter multiplets described by harmonic $(0,1)$ forms:

$$
\nu_{i} \in H^{1}\left(X, E_{i}\right) \quad \bar{\partial}_{E_{i}} \nu_{i}=\bar{\partial}_{E_{i}}^{\dagger} \nu_{i}=0 \quad i=1,2,3
$$

Holomorphic Yukawa couplings:

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

Holomorphic Yukawa couplings are independent of representative:

$$
\lambda\left(\nu_{1}+\bar{\partial}_{E_{1}} a_{1}, \nu_{2}+\bar{\partial}_{E_{2}} a_{2}, \nu_{3}+\bar{\partial}_{E_{3}} a_{3}\right)=\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)
$$

Holomorphic Yukawa couplings can be computed algebraically!

Normalisation (proportional to):

$$
\left(\nu_{i}, \mu_{i}\right):=\int_{X} \nu_{i} \wedge \bar{\star}_{E_{i}} \mu_{i}=\frac{1}{2} \int_{X} J \wedge J \wedge \nu_{i} \wedge\left(H \bar{\mu}_{i}\right)
$$

Normalization is not independent of representative and needs to be computed for harmonic $(0,1)$ forms.

Algebraic computation (probably) not possible. Requires methods of differential geometry.

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3}
$$

- models from SO(10) GUTs: V has structure group $S U(4)$

Yukawa coupling 101616 :

$$
\begin{aligned}
& 10 \leftrightarrow \nu_{1} \in H^{1}\left(X, \wedge^{2} V\right) \\
& 16 \leftrightarrow \nu_{2,3} \in H^{1}(X, V)
\end{aligned}
$$

$$
\nu_{1} \wedge \nu_{2} \wedge \nu_{3} \in H^{3}\left(X, \wedge^{4} V\right)=H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

- models from $\operatorname{SU(5)}$ GUTs: V has structure group $S U(5)$ up-Yukawa 51010 :

$$
\begin{aligned}
5 & \leftrightarrow \nu_{1} \in H^{1}\left(X, \wedge^{2} V^{*}\right) \\
10 & \leftrightarrow \nu_{2,3} \in H^{1}(X, V)
\end{aligned}
$$

$$
\nu_{1} \wedge \nu_{2} \wedge \nu_{3} \in H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

down-Yukawa $\overline{5} \overline{5} 10$:

$$
\overline{\mathbf{5}} \leftrightarrow \nu_{1,2} \in H^{1}\left(X, \wedge^{2} V\right)
$$

$$
10 \leftrightarrow \nu_{3} \in H^{1}(X, V)
$$

$$
\nu_{1} \wedge \nu_{2} \wedge \nu_{3} \in H^{3}\left(X, \wedge^{5} V\right)=H^{3}\left(X, \mathcal{O}_{X}\right) \cong \mathbb{C}
$$

SM Yukawa couplings are obtained after taking quotient by discrete symmetry Γ, adding a Wilson line and keeping the Γ-invariant parts.

We would like to....

- understand how to compute hol. Yukawa couplings using differential geometry language.
- clarify how such a differential geometry calculation relates to the algebraic one
- set the scene for a computation of the normalisation which requires differential geometry.

Yukawa couplings for co-dimension one CYs

Laboratory: tetra-quadric CY

$$
X \sim\left[\begin{array}{l|l}
\\
\mathbb{P}^{1} & 2 \\
\mathbb{P}^{1} & 2 \\
\mathbb{P}^{1} & 2 \\
\mathbb{P}^{1} & 2
\end{array}\right] \quad \begin{gathered}
\text { defining polynomial } p \text { with } \\
\text { multi-degree } \mathrm{q}=(2,2,2,2)
\end{gathered}
$$

Line bundles $L=\mathcal{O}_{X}\left(k_{1}, \ldots k_{4}\right)=\left.\mathcal{O}_{\mathcal{A}}\left(k_{1}, \ldots, k_{4}\right)\right|_{X}$
Consider line bundle sums

$$
V=\bigoplus_{a=1}^{n} L_{a} \quad n=3,4,5 \quad c_{1}(V)=0
$$

Leads to structure groups $S\left(U(1)^{n}\right) \subset S U(n)$ and gauge groups $E_{6}, S O(10), S U(5) \times S\left(U(1)^{n}\right)$

Tetra-quadric is simplest CICY which leads to line bundle standard models.

Line bundle cohomology on the tetra-quadric
Kozsul sequence: $0 \rightarrow N^{*} \otimes \mathcal{L} \rightarrow \mathcal{L} \rightarrow L \rightarrow 0$ where

$$
N=\mathcal{O}_{\mathcal{A}}(2,2,2,2) \text { and } L=\left.\mathcal{L}\right|_{X}
$$

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\mathcal{A}, \mathcal{L}) \xrightarrow{i^{*}} H^{1}(X, L) \longleftarrow \ni \nu \\
& \stackrel{\delta}{\rightarrow} H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L}) \rightarrow \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \nu=\left.\hat{\nu}\right|_{X}, \quad \hat{\nu} \in H^{1}(\mathcal{A}, \mathcal{L}), \quad \bar{\partial} \hat{\nu}=0 \\
& \text { "type 1" }
\end{aligned}
$$

$H^{1}(X, L) \cong \operatorname{Coker}\left(H^{1}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{1}(\boldsymbol{\mathcal { A }}, \mathcal{L})\right) \oplus$

$$
\operatorname{Ker}\left(H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L})\right)
$$

$$
\begin{gathered}
\nu=\left.\hat{\nu}\right|_{X}, \quad \hat{\omega} \in H^{2}\left(\mathcal{A}, N^{*} \otimes \mathcal{L}\right), \quad \bar{\partial} \hat{\nu}=p \hat{\omega} \\
\text { "type 2" }
\end{gathered}
$$

Holomorphic Yukawa couplings on the tetra-quadric

$$
\begin{gathered}
\begin{array}{c}
\nu_{i} \in H^{1}\left(X, \nu_{2}, \nu_{3}\right)=K_{X} \Omega \\
\Omega \\
K_{i}
\end{array}=\mathcal{O}_{X}\left(\mathbf{k}_{i}\right) \\
=\frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{1}{p}\left(\bar{\partial} \hat{\nu}_{1} \wedge \nu_{2} \wedge \hat{\nu}_{2} \wedge \hat{\nu}_{3}-\hat{\nu}_{1} \wedge \bar{\partial} \hat{\nu}_{2} \wedge \hat{\nu}_{3}+\hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \bar{\partial} \hat{\nu}_{3}\right) \wedge d z_{1} \wedge \cdots \wedge d z_{4} \\
\text { insert } d p \wedge d \bar{p} \delta^{2}(p) \\
\text { use } \delta^{2}(p) d \bar{p}=\frac{1}{\pi} \bar{\partial}\left(\frac{1}{p}\right) \text { and } \hat{\Omega} \wedge d p=d z_{1} \wedge \cdots \wedge d z_{4} \quad
\end{gathered}
$$

- Case 1: All ν_{i} are of type 1: $\Rightarrow \bar{\partial} \hat{\nu}_{i}=0$

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=0
$$

Yukawa couplings vanish due to structure of cohomology.

- Case 2. ν_{2} is tune ? other ر. are tune 1. $\Rightarrow \bar{\partial} \hat{\nu}_{3}=p \hat{\omega}$

$$
\Rightarrow \quad \bar{\partial} \hat{\nu}_{i}=0
$$

$$
\begin{aligned}
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right) & =\frac{1}{\pi} \int_{\mathbb{C}^{4}} \hat{\nu}_{1} \wedge \hat{\nu}_{2} \wedge \hat{\omega} \wedge d z_{1} \wedge \cdots \wedge d z_{4} \\
& =\frac{1}{\pi} \int_{\mathbb{C}^{4}} \kappa_{1}^{k_{1,1}} \kappa_{2}^{k_{2,2}} \kappa_{3}^{k_{3,3}-2} \kappa_{4}^{k_{3,4}-2} P_{\left(\mathbf{k}_{1}\right)} Q_{\left(\mathbf{k}_{2}\right)} R_{\left(\mathbf{k}_{3}-\mathbf{q}\right)} d^{4} z d^{4} \bar{z}
\end{aligned}
$$

Can always be explicitly integrated, or calculated algebraically:

$$
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=16 \pi^{3} c \mu(P, Q, R)
$$

$$
\mu(P, Q, R)=\tilde{P} \tilde{Q} \tilde{R}
$$

- Case 3: More than one ν_{i} originates from ambient 2-form

Slightly more complicated but can always be integrated.

Generalisation and a vanishing theorem

Co-dimension k CICY in ambient space $\mathcal{A}=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{m}}$:

$$
\begin{aligned}
& K \text { defining polynomials } \\
& p_{1}, \ldots, p_{k} \text {, section of } \\
& X \sim\left[\begin{array}{l|ccc}
\mathbb{P}^{n_{1}} & Q_{1}^{1} & \cdots & Q_{k}^{1} \\
\vdots & \vdots & \vdots & \vdots \\
\mathbb{P}^{n_{m}} & Q_{1}^{m} & \cdots & Q_{k}^{m}
\end{array}\right] \mathcal{N}=\bigoplus_{a=1}^{k} \mathcal{O}_{\mathcal{A}}\left(\mathbf{Q}_{a}\right)
\end{aligned}
$$

Line bundle cohomology for $K=\left.\mathcal{K}\right|_{X}, \mathcal{K} \rightarrow \mathcal{A}$ from:
$0 \rightarrow \wedge^{k} \mathcal{N}^{*} \otimes \mathcal{K} \rightarrow \wedge^{k-1} \mathcal{N}^{*} \otimes \mathcal{K} \rightarrow \cdots \rightarrow \mathcal{N}^{*} \otimes \mathcal{K} \rightarrow \mathcal{K} \rightarrow K \rightarrow 0$
$\nu \in H^{1}(X, K)$ is called "type τ^{\prime} ", where $\tau=1, \ldots, k+1$, if it descends from $\hat{\omega} \in H^{\tau}\left(\mathcal{A}, \wedge^{\tau-1} \mathcal{N}^{*} \otimes \mathcal{K}\right)$.
$\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=\int_{X} \Omega \wedge \nu_{1} \wedge \nu_{2} \wedge \nu_{3} \quad$ where ν_{i} are of type τ_{i}

Vanishing theorem:

$$
\text { If } \tau_{1}+\tau_{2}+\tau_{3}<\operatorname{dim}(\mathcal{A}) \text { then } \lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=0
$$

Implies vanishing of many Yukawa couplings, in particular at higher co-dimension.

Formulation independent of embedding space?

Examples

Example 1: A tetra-quadric $\mathrm{SO}(10)$ model with vanishing Yukawa couplings

$$
\begin{aligned}
& L_{1}=\mathcal{O}_{X}(-1,0,0,1), \quad L_{2}=\mathcal{O}_{X}(0,-2,1,3) \\
& L_{3}=\mathcal{O}_{X}(0,0,1,-3) . \quad L_{4}=\mathcal{O}_{X}(1,2,-2,-1)
\end{aligned}
$$

spectrum: $8 \mathbf{1 6}_{2}, 4 \mathbf{1 6}_{3}, 3 \mathbf{1 0}_{1,4}, 3 \mathbf{1 0}_{2,3}$ plus singlets

Yukawa couplings: $\lambda_{I J K} \mathbf{1 0}_{1,4}^{(I)} \mathbf{1 6}_{2}^{(J)} \mathbf{K}_{1}=L_{1} \otimes L_{4}=\mathcal{O}_{X}(0,2,-2,0) \quad K_{2}=L_{2}=\mathcal{O}_{X}(0,-2,1,3) \quad K_{3}=L_{3}=\mathcal{O}_{X}(0,0,1,-3)$

But all ν_{i} are of type 1 so that $\lambda_{I J K}=0$.

Example 2: up-Yukawa couplings for SU(5) model on tetra-quadric Standard model based on SU(5) GUT with line bundles

$$
\begin{aligned}
& L_{1}=\mathcal{O}_{X}(-1,0,0,1), L_{2}=\mathcal{O}_{X}(-1,-3,2,2), L_{3}=\mathcal{O}_{X}(0,1,-1,0) \\
& L_{4}=\mathcal{O}_{X}(1,1,-1,-1), L_{5}=\mathcal{O}_{X}(1,1,0,-2)
\end{aligned}
$$

spectrum: $8 \mathbf{1 0}_{2}, 4 \mathbf{1 0}_{5}, 4 \overline{\mathbf{5}}_{2,4}, 3 \overline{\mathbf{5}}_{2,5}^{H}, 8 \overline{\mathbf{5}}_{4,5}, 3 \mathbf{5}_{2,5}^{\bar{H}}$

$$
12 \mathbf{1}_{2,1}, 12 \mathbf{1}_{5,1}, 20 \mathbf{1}_{2,3}, 12 \mathbf{1}_{2,4}, 4 \mathbf{1}_{5,3}
$$

Relevant line bundles for up-Yukawa coupling:

$$
\begin{array}{lll}
K_{1}=L_{2}^{*} \otimes L_{5}^{*} & 3 \mathbf{5}_{2,5}^{H} & \hat{\nu}_{1}=\kappa_{3}^{-2} Q_{(0,2,-2,0)} d \bar{z}_{3} \longleftarrow \\
K_{2}=L_{5} & 4 \mathbf{1 0}_{2} & \hat{\nu}_{2}=\kappa_{4}^{-2} R_{(1,1,0,-2)} d \bar{z}_{4} \\
K_{3}=L_{2} & 8 \mathbf{1 0}_{5} & \hat{\omega}=\kappa_{1}^{-3} \kappa_{2}^{-5} S_{(-3,-5,0,0)} d \bar{z}_{1} \wedge d \bar{z}_{2} \longleftarrow \text { type } 1
\end{array}
$$

where

$$
\begin{aligned}
Q & =q_{0}+q_{1} z_{2}+q_{2} z_{2}^{2} \\
R & =r_{0}+r_{1} z_{1}+r_{2} z_{2}+r_{3} z_{1} z_{2} \\
S & =s_{0}+s_{1} \bar{z}_{2}+s_{2} \bar{z}_{2}^{2}+s_{3} \bar{z}_{2}^{3}+s_{4} \bar{z}_{1}+s_{5} \bar{z}_{1} \bar{z}_{2}+s_{6} \bar{z}_{1} \bar{z}_{2}^{2}+s_{7} \bar{z}_{1} \bar{z}_{2}^{3}
\end{aligned}
$$

Yukawa couplings, explicit calculation:

$$
\begin{aligned}
\lambda(Q, R, S)= & \frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q R S}{\kappa_{1}^{3} \kappa_{2}^{5} \kappa_{3}^{2} \kappa_{4}^{2}} d^{4} z d^{4} \bar{z} \\
= & \frac{2 \pi^{3}}{3}\left[3 q_{0} r_{0} s_{0}+3 q_{0} r_{1} s_{4}+q_{0} r_{2} s_{1}+q_{0} r_{3} s_{5}+q_{1} r_{0} s_{1}+q_{1} r_{1} s_{5}+\right. \\
& \left.q_{1} r_{2} s_{2}+q_{1} r_{3} s_{6}+q_{2} r_{0} s_{2}+q_{2} r_{1} s_{6}+3 q_{2} r_{2} s_{3}+3 q_{2} r_{3} s_{7}\right]
\end{aligned}
$$

Yukawa couplings, algebraic calculation:

$$
\begin{aligned}
& \tilde{Q}=q_{0} y_{0}^{2}+q_{1} y_{0} y_{1}+q_{2} y_{1}^{2} \\
& \tilde{R}=r_{0} x_{0} y_{0}+r_{1} x_{1} y_{0}+r_{2} x_{0} y_{1}+r_{3} x_{1} y_{1} \\
& \tilde{S}=s_{0} x_{0} y_{0}^{3}+s_{1} x_{0} y_{0}^{2} y_{1}+s_{2} x_{0} y_{0} y_{1}^{2}+s_{3} x_{0} y_{1}^{3}+s_{4} x_{1} y_{0}^{3}+s_{5} x_{1} y_{0}^{2} y_{1}+s_{6} x_{1} y_{0} y_{1}^{2}+s_{7} x_{1} y_{1}^{3} \\
& \\
& \\
& \mu(Q, R, S)=\left(q_{0} \partial_{y_{0}}^{2}+q_{1} \partial_{y_{0}} \partial_{y_{1}}+q_{2} \partial_{y_{1}}^{2}\right)\left(r_{0} \partial_{x_{0}} \partial_{y_{0}}+r_{1} \partial_{x_{1}} \partial_{y_{0}}+r_{2} \partial_{x_{0}} \partial_{y_{1}}+r_{3} \partial_{x_{1}} \partial_{y_{1}}\right) \\
& \quad\left(s_{0} x_{0} y_{0}^{3}+s_{1} x_{0} y_{0}^{2} y_{1}+s_{2} x_{0} y_{0} y_{1}^{2}+s_{3} x_{0} y_{1}^{3}+s_{4} x_{1} y_{0}^{3}+s_{5} x_{1} y_{0}^{2} y_{1}+s_{6} x_{1} y_{0} y_{1}^{2}+s_{7} x_{1} y_{1}^{3}\right) \\
& =2\left[3 q_{0} r_{0} s_{0}+3 q_{0} r_{1} s_{4}+q_{0} r_{2} s_{1}+q_{0} r_{3} s_{5}+q_{1} r_{0} s_{1}+q_{1} r_{1} s_{5}+\right. \\
& \left.q_{1} r_{2} s_{2}+q_{1} r_{3} s_{6}+q_{2} r_{0} s_{2}+q_{2} r_{1} s_{6}+3 q_{2} r_{2} s_{3}+3 q_{2} r_{3} s_{7}\right] .
\end{aligned}
$$

After taking quotient by $\Gamma=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and adding Wilson line:

$$
\lambda^{(u)}=\frac{\pi^{3}}{3}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Example 3: singlet-Yukawa couplings in $S U(5)$ model on tetra-quadric
The same model has a coupling

$$
\mathbf{1}_{2,4} \overline{\mathbf{5}}_{4,5} \mathbf{5}_{2,5}
$$

with associated line bundles

$$
\begin{aligned}
K_{1}=L_{2} \otimes L_{4}^{*}=\mathcal{O}_{X}(-2,-4,3,3) & \rightarrow 12 \mathbf{1}_{2,4} \in \delta^{-1} \operatorname{Ker}\left(H ^ { 2 } \left(\mathcal{O}_{\mathcal{A}}(-4,-6,1,1) \xrightarrow{p} H^{2}\left(\mathcal{O}_{\mathcal{A}}(-2,-4,3,3)\right)\right.\right. \\
K_{2}=L_{4} \otimes L_{5}=\mathcal{O}_{X}(2,2,-1,-3) & \rightarrow 8 \overline{5}_{4,5} \in \delta^{-1} H^{2}\left(\mathcal{O}_{\mathcal{A}}(0,0,-3,-5) \longleftarrow \text { type } 2\right. \\
K_{3}=L_{2}^{*} \otimes L_{5}^{*}=\mathcal{O}_{X}(0,2,-2,0) & \rightarrow 3 \mathbf{5}_{2,5} \in H^{1}\left(\mathcal{O}_{\mathcal{A}}(0,2,-2,0)\right) \longleftarrow \text { type } 1
\end{aligned}
$$

and differential forms

$$
\begin{aligned}
& a_{0}, \ldots, a_{14} \\
& \hat{\omega}_{1}=\kappa_{1}^{-4} \kappa_{2}^{-6} Q_{(-4,-6,1,1)} d \bar{z}_{1} \wedge d \bar{z}_{2} \quad \text { where } \tilde{p} \tilde{Q}=0 \\
& \hat{\omega}_{2}=\kappa_{3}^{-3} \kappa_{4}^{-5} R_{(0,0,-3,-5)} d \bar{z}_{3} \wedge d \bar{z}_{4} \\
& \hat{\nu}_{3}=\kappa_{3}^{-2} S_{(0,2,-2,0)} d \bar{z}_{3} . \\
& b_{0}, b_{1}
\end{aligned}
$$

Yukawa couplings for a 5-parameter family of tetra-quadrics:

$$
\begin{aligned}
\lambda\left(\nu_{1}, \nu_{2}, \nu_{3}\right)= & -\frac{1}{\pi} \int_{\mathbb{C}^{4}} \frac{Q \mathcal{R} S}{\kappa_{1}^{4} \kappa_{2}^{6} \kappa_{3}^{4} \kappa_{4}^{5}} d^{4} z d^{4} \bar{z} \\
= & \frac{\pi^{3}}{3240}\left(2 a_{14} b_{1} c_{1}+9 a_{12} b_{0} c_{2}+9 a_{13} b_{0} c_{2}-8 a_{4} b_{1} c_{2}-8 a_{5} b_{1} c_{2}+3 a_{12} b_{1} c_{2}+3 a_{13} b_{1} c_{2}-36 a_{7} b_{0} c_{3}-\right. \\
& 12 a_{2} b_{1} c_{3}-12 a_{14} b_{0} c_{4}+6 a_{2} b_{1} c_{4}+6 a_{3} b_{1} c_{4}-6 a_{6} b_{1} c_{4}-6 a_{7} b_{1} c_{4}+4 a_{14} b_{1} c_{4}-36 a_{6} b_{0} c_{5}- \\
& \left.12 a_{3} b_{1} c_{5}-36 a_{2} b_{0} c_{6}-36 a_{3} b_{0} c_{6}-12 a_{6} b_{1} c_{6}-12 a_{7} b_{1} c_{6}\right)
\end{aligned}
$$

Still need to find kernel Ma=0 where

	($24 c_{6}$	0	0	0	$4 c_{3}$	$4 c_{6}$	0	0	0	$24 c_{5}$	0	0	$3 c_{4}$	0	$0 \quad$)
	$24 c_{5}$	0	$6 c_{2}$	0	$4 c_{6}$	$4 c_{3}$	0	$6 c_{2}$	0	$24 c_{6}$	0	0	$-3 c_{4}$	0	0
	$24 c_{4}$	$24 c_{6}$	0	$6 c_{2}$	$4 c_{6}-4 c_{4}$	$4 c_{3}+4 c_{4}$	$6 c_{2}$	0	$24 c_{5}$	$-24 c_{4}$	$12 c_{2}$	0	$3 c_{1}$	$3 c_{4}$	$2 c_{2}$
	0	$24 c_{5}$	0	0	$4 c_{3}$	$4 c_{6}$	0	0	$24 c_{6}$	0	$12 c_{2}$	0	0	$-3 c_{4}$	$2 c_{2}$
	$24 c_{3}$	0	0	0	$4 c_{6}$	$4 c_{5}$	0	0	0	$24 c_{6}$	0	$12 c_{2}$	$-3 c_{4}$	0	$2 c_{2}$
M	$24 c_{6}$	$24 c_{4}$	$6 c_{2}$	0	$4 c_{4}+4 c_{5}$	$4 c_{6}-4 c_{4}$	0	$6 c_{2}$	$-24 c_{4}$	$24 c_{3}$	0	$12 c_{2}$	$3 c_{4}$	$3 c_{1}$	$2 c_{2}$
	0	$24 c_{3}$	0	$6 c_{2}$	$4 c_{5}$	$4 c_{6}$	$6 c_{2}$	0	$24 c_{6}$	0	0	0	0	$-3 c_{4}$	0
	0	$24 c_{6}$	0	0	$4 c_{6}$	$4 c_{5}$	0	0	$24 c_{3}$	0	0	0	0	$3 c_{4}$	0
	0	0	$12 c_{6}$	$12 c_{6}$	$8 c_{2}$	$8 c_{2}$	$12 c_{3}$	$12 c_{5}$	0	0	0	0	0	0	$4 c_{4}$
	0	0	$12 c_{5}$	$12 c_{3}$	0	0	$12 c_{6}$	$12 c_{6}$	0	0	0	0	0	0	$-4 c_{4}$
	(0	0	$12 c_{6}$	$12 c_{6}$	0	0	$12 c_{5}$	$12 c_{3}$	0	0	0	0	$6 c_{2}$	$6 c_{2}$	$4 c_{4}$
	(0	0	$12 c_{3}+12 c_{4}$	$4+12 c_{5}$	$8 c_{2}$	$8 c_{2}$	$12 c_{6}-12 c_{4}$	6-12c c_{4}	0	0	0	0	$6 c_{2}$	$6 c_{2}$	$4 c_{1}-4 c_{4}$

The Yukawa coupling

$$
\lambda_{i j} S^{i} L^{j} \bar{H}
$$

then becomes

$$
\lambda=\frac{\pi^{3}}{180}\left(\begin{array}{cc}
0 & \left(c_{3}-c_{5}\right)\left(4 c_{4}^{2}+c_{1}\left(c_{3}+c_{5}-2 c_{6}\right)\right)\left(c_{3}+c_{5}+2 c_{6}\right) \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

This is generically rank 1 , but will be generally rank 2 away from the 5 -parameter family. For $c_{3}=c_{5}$ the Higgs remains massless even if $\left\langle S^{i}\right\rangle \neq 0$.

Yukawa unification?

Consider, for example, $S U(5)$ GUT with $\Gamma=\mathbb{Z}_{2}$ and down-Yukawa:
upstairs: 6 families

$$
\begin{aligned}
& \rightarrow \quad \sum_{i, j=1}^{3} \lambda_{i j}^{(d)} H d^{i} Q^{j} \\
& \rightarrow \quad \sum_{i, j=1}^{3} \lambda_{i j}^{(e)} H L^{i} e^{j}
\end{aligned}
$$

Wilson line described by Γ-representations χ_{2}, χ_{3} satisfying $\chi_{2}^{2} \otimes \chi_{3}^{3}=1$. For $\Gamma=\mathbb{Z}_{2}$ we have $\chi_{2}=(1)$ and $\chi_{3}=(0)$.

$$
\chi_{H}=\chi_{2}^{*}=(1)
$$

$$
\chi_{d}=\chi_{3}^{*}=(0) \quad \chi_{Q}=\chi_{2} \otimes \chi_{3}=(1)
$$

$$
\chi_{L}=\chi_{2}^{*}=(1) \quad \chi_{e}=\chi_{2} \otimes \chi_{2}=(0)
$$

$\lambda^{(e)}$ and $\lambda^{(d)}$ are (in general) unrelated!

This holds for any symmetry Γ and all types of Yukawa couplings.

In heterotic GUT models with Wilson line breaking Yukawa unification in the traditional sense (i.e. enforced by the GUT symmetry) never arises.

Q: Can Yukawa unification arise from additional symmetries of the upstairs theory, e.g. from Γ and additional $U(1)$'s?

A unification scenario for an $S U(5)$ line bundle model
Line bundle sum $V=\bigoplus_{a=1}^{5} L_{a}$
Upstairs gauge group $S U(5) \times \hat{J}, \hat{J}=S\left(U(1)^{5}\right)$ and $\Gamma=\mathbb{Z}_{2}$

Assumed spectrum: $\mathcal{V}_{\mathbf{1 0}}=\operatorname{Span}\left(\mathbf{1 0}_{4}, \mathbf{1 0}_{5}\right), \quad \mathcal{V}_{\overline{5}}=\operatorname{Span}\left(\overline{5}_{1,2}^{H}, \overline{\boldsymbol{5}}_{3,4}, \overline{\boldsymbol{5}}_{3,5}\right)$
\hat{J}-representations: $\quad R_{\mathbf{1 0}}(\boldsymbol{\alpha})=\operatorname{diag}\left(e^{i \mathbf{e}_{4} \cdot \boldsymbol{\alpha}}, e^{i \mathbf{e}_{5} \cdot \boldsymbol{\alpha}}\right)$

$$
R_{\overline{5}}(\boldsymbol{\alpha})=\operatorname{diag}\left(e^{i\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right) \cdot \boldsymbol{\alpha}}, e^{i\left(\mathbf{e}_{3}+\mathbf{e}_{4}\right) \cdot \boldsymbol{\alpha}}, e^{i\left(\mathbf{e}_{3}+\mathbf{e}_{5}\right) \cdot \boldsymbol{\alpha}}\right)
$$

\mathbb{Z}_{2}-representations: $\quad \rho_{\mathbf{1 0}}(-1)=\sigma, \quad \rho_{\overline{5}}(-1)=\operatorname{diag}(-1, \sigma), \quad \sigma=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$

Upstairs Yukawa coupling: $\quad \hat{W}=\overline{\mathbf{5}}_{1,2}^{H}\left(\overline{\mathbf{5}}_{3,4}, \overline{\mathbf{5}}_{3,5}\right) \hat{Y}\binom{\mathbf{1 0}_{4}}{\mathbf{1 0}}$

$$
\hat{Y}=2 Y=\left(\begin{array}{ll}
0 & y \\
y^{\prime} & 0
\end{array}\right)
$$

Downstairs this leads to Yukawa unification, $Y^{(e)}=Y^{(d)}$, for one family.

I this way, Yukawa unification can be engineered for one family but not the other two.

An example for Yukawa unification

Manifold:

$$
\hat{X} \sim\left[\begin{array}{c|ccccc}
\mathbb{P}^{1} & 1 & 0 & 1 & 0 & 0 \\
\mathbb{P}^{1} & 1 & 0 & 1 & 0 & 0 \\
\mathbb{P}^{1} & 0 & 1 & 0 & 0 & 1 \\
\mathbb{P}^{1} & 0 & 1 & 0 & 0 & 1 \\
\mathbb{P}^{2} & 1 & 0 & 0 & 1 & 1 \\
\mathbb{P}^{2} & 0 & 1 & 1 & 1 & 0
\end{array}\right] \xrightarrow{\boldsymbol{6}, 26} \longrightarrow x_{i, \alpha} \longrightarrow \mathbf{y}=\left(y_{0}, y_{1}, y_{2}\right)^{T}, \longrightarrow=\left(z_{0}, z_{1}, z_{2}\right)^{T},
$$

\mathbb{Z}_{2}-symmetry:

$$
\begin{aligned}
& x_{i, \alpha} \rightarrow(-1)^{\alpha+1} x_{i, \alpha}, \quad \mathbf{y} \leftrightarrow \mathbf{z} \\
& \mathcal{N}_{1} \leftrightarrow \mathcal{N}_{3}, \quad \mathcal{N}_{2} \leftrightarrow \mathcal{N}_{5}, \quad \mathcal{N}_{4} \rightarrow \mathcal{N}_{4}
\end{aligned}
$$

line bundles: $L_{1}=\mathcal{O}_{\hat{X}}(-1,0,-1,1,0,0), \quad L_{2}=\mathcal{O}_{\hat{X}}(2,1,2,0,-1,-1), \quad L_{3}=\mathcal{O}_{\hat{X}}(1,1,-1,-1,0,0)$, $L_{4}=\mathcal{O}_{\hat{X}}(-1,-1,0,0,0,1), \quad L_{5}=\mathcal{O}_{\hat{X}}(-1,-1,0,0,1,0)$.
spectrum: $\quad \mathbf{1 0}_{4}, \quad \mathbf{1 0}_{5}, \quad 2 \overline{\mathbf{5}}_{1,2}^{H}, \quad \overline{\mathbf{5}}_{3,4}, \quad \overline{\mathbf{5}}_{3,5}$

$$
6 \mathbf{1 0}_{2}, \quad 2 \overline{\mathbf{5}}_{1,3}, \quad 2 \mathbf{5}_{1,4}, \quad 2 \mathbf{5}_{1,5}, \quad 7 \overline{\mathbf{5}}_{4,5}, \quad \mathbf{5}_{4,5}
$$

Right multiplets and representations of $S\left(U(1)^{5}\right)$ and \mathbb{Z}_{2} for unification scenario:

$$
\hat{W}=\overline{\mathbf{5}}_{1,2}^{H}\left(\overline{5}_{3,4}, \overline{\mathbf{5}}_{3,5}\right) \hat{Y}\binom{\mathbf{1 0}_{4}}{\mathbf{1 0}_{5}}, \quad \hat{Y}=2 Y=\left(\begin{array}{ll}
0 & y \\
y^{\prime} & 0
\end{array}\right)
$$

Vanishing theorem does not apply!

We have checked by explicit computation, using the above methods, that $y, y^{\prime} \neq 0$.

Conclusion

- We can compute the holomorphic (perturbative) Yukawa couplings for heterotic line bundle models on CICYs, both algebraically and in terms of differential geometry.
- Complex structure dependence can be worked out explicitly.
- Many Yukawa couplings are zero perturbatively due to a topological vanishing theorem.
- Underlying GUT symmetry of models never leads to Yukawa unification.
- Partial Yukawa unification can be induced by an interplay of discrete and $U(1)$ symmetries.
- Generalisation to CYs defined in more general toric ambient spaces and to bundles with non-Abelian structure group possible.
- Most pressing outstanding problem is the calculation of the matter field Kahler metric -> physical Yukawa couplings.

Thanks

