<u>Calculating Yukawa Couplings</u> <u>in</u> <u>Heterotic Calabi-Yau Models</u>

Andre Lukas

University of Oxford

(0,2) workshop, 30 May – 3 June, 2016, Paris

in collaboration with: Evgeny Buchbinder, Philip Candelas, Andrei Constantin, James Gray, Stefan Blesneag

based on: 1512.05322 and 1606.nnnnn to appear

<u>Outline</u>

- Introduction: Heterotic Yukawa couplings
- Yukawa couplings for co-dimension one CYs
- Generalisation and a vanishing theorem
- Examples
- Yukawa unification?
- An example for Yukawa unification
- Conclusion

Introduction: Heterotic Yukawa couplings

- Consider heterotic string on CY 3-fold \boldsymbol{X}
- observable bundle $V \to X$ with structure group $H \subset E_8$
- low-energy gauge group $G = \mathcal{C}_{E_8}(H)$
- matter multiplets from associated bundles $E_i \rightarrow X, i = 1, 2, 3$

Matter multiplets described by harmonic (0,1) forms:

$$\nu_i \in H^1(X, E_i) \qquad \bar{\partial}_{E_i} \nu_i = \bar{\partial}_{E_i}^{\dagger} \nu_i = 0 \qquad i = 1, 2, 3$$

Holomorphic Yukawa couplings:

$$\lambda(\nu_1,\nu_2,\nu_3) = \int_X \Omega \wedge \nu_1 \wedge \nu_2 \wedge \nu_3$$

Holomorphic Yukawa couplings are independent of representative:

$$\lambda(\nu_1 + \bar{\partial}_{E_1}a_1, \nu_2 + \bar{\partial}_{E_2}a_2, \nu_3 + \bar{\partial}_{E_3}a_3) = \lambda(\nu_1, \nu_2, \nu_3)$$

Holomorphic Yukawa couplings can be computed algebraically!

Normalisation (proportional to):

$$(\nu_i, \mu_i) := \int_X \nu_i \wedge \bar{\star}_{E_i} \mu_i = \frac{1}{2} \int_X J \wedge J \wedge \nu_i \wedge (H\bar{\mu}_i)$$

Normalization is not independent of representative and needs to be computed for harmonic (0,1) forms.

Algebraic computation (probably) not possible. Requires methods of differential geometry.

$$\lambda(\nu_1,\nu_2,\nu_3) = \int_X \Omega \wedge \nu_1 \wedge \nu_2 \wedge \nu_3$$

• models from SO(10) GUTs: V has structure group SU(4)

Yukawa coupling 101616:

 $10 \leftrightarrow \nu_1 \in H^1(X, \wedge^2 V)$ $16 \leftrightarrow \nu_{2,3} \in H^1(X, V)$

 $\nu_1 \wedge \nu_2 \wedge \nu_3 \in H^3(X, \wedge^4 V) = H^3(X, \mathcal{O}_X) \cong \mathbb{C}$

• models from SU(5) GUTs: V has structure group SU(5)

 $\nu_1 \wedge \nu_2 \wedge \nu_3 \in H^3(X, \mathcal{O}_X) \cong \mathbb{C}$

down-Yukawa $\overline{\mathbf{5}} \, \overline{\mathbf{5}} \, \mathbf{10}$: $\mathbf{10} \leftrightarrow \nu_3 \in H^1(X, N^2V)$

 $\nu_1 \wedge \nu_2 \wedge \nu_3 \in H^3(X, \wedge^5 V) = H^3(X, \mathcal{O}_X) \cong \mathbb{C}$

SM Yukawa couplings are obtained after taking quotient by discrete symmetry Γ , adding a Wilson line and keeping the Γ -invariant parts.

We would like to....

- understand how to compute hol. Yukawa couplings using differential geometry language.
- clarify how such a differential geometry calculation relates to the algebraic one
- set the scene for a computation of the normalisation which requires differential geometry.

Yukawa couplings for co-dimension one CYs

Laboratory: tetra-quadric CY

$$X \sim \begin{bmatrix} \mathbb{P}^1 & 2 \\ \mathbb{P}^1 & 2 \end{bmatrix}$$

Line bundles $L = \mathcal{O}_X(k_1, \ldots, k_4) = \mathcal{O}_\mathcal{A}(k_1, \ldots, k_4)|_X$

Consider line bundle sums

$$V = \bigoplus_{a=1}^{n} L_a$$
 $n = 3, 4, 5$ $c_1(V) = 0$

Leads to structure groups $S(U(1)^n) \subset SU(n)$ and gauge groups $E_6, SO(10), SU(5) \times S(U(1)^n)$

Tetra-quadric is simplest CICY which leads to line bundle standard models.

Line bundle cohomology on the tetra-quadric

Kozsul sequence:
$$0 \to N^* \otimes \mathcal{L} \to \mathcal{L} \to L \to 0$$
 where $N = \mathcal{O}_{\mathcal{A}}(2, 2, 2, 2)$ and $L = \mathcal{L}|_X$

$$\cdots \to H^1(\mathcal{A}, N^* \otimes \mathcal{L}) \xrightarrow{p} H^1(\mathcal{A}, \mathcal{L}) \xrightarrow{i^*} H^1(X, \mathcal{L}) \stackrel{\bullet}{\to} \nu$$
$$\xrightarrow{\delta} H^2(\mathcal{A}, N^* \otimes \mathcal{L}) \xrightarrow{p} H^2(\mathcal{A}, \mathcal{L}) \to \cdots$$

$$u = \hat{
u}|_X, \ \ \hat{
u} \in H^1(\mathcal{A}, \mathcal{L}), \ \ ar{\partial}\hat{
u} = 0$$
 ``type 1"

$$\begin{aligned} H^{1}(X,L) &\cong \operatorname{Coker} \left(H^{1}(\mathcal{A}, N^{*} \otimes \mathcal{L}) \xrightarrow{p} H^{1}(\overset{\bullet}{\mathcal{A}}, \mathcal{L}) \right) \oplus \\ &\operatorname{Ker} \left(H^{2}(\mathcal{A}, N^{*} \otimes \mathcal{L}) \xrightarrow{p} H^{2}(\mathcal{A}, \mathcal{L}) \right) \\ & \bullet \end{aligned}$$
$$\begin{aligned} \nu &= \hat{\nu}|_{X} , \ \hat{\omega} \in H^{2}(\mathcal{A}, N^{*} \otimes \mathcal{L}) , \ \bar{\partial}\hat{\nu} = p\hat{\omega} \\ & \bullet \end{aligned}$$
$$\begin{aligned} & \bullet \end{aligned}$$

Holomorphic Yukawa couplings on the tetra-quadric

$$\lambda(\nu_1,\nu_2,\nu_3) = \int_X \Omega \wedge \nu_1 \wedge \nu_2 \wedge \nu_3 \qquad \qquad \begin{array}{l} \nu_i \in H^1(X,K_i) \\ K_i = \mathcal{O}_X(\mathbf{k}_i) \end{array}$$

$$= \frac{1}{\pi} \int_{\mathbb{C}^4} \frac{1}{p} \left(\bar{\partial} \hat{\nu}_1 \wedge \hat{\nu}_2 \wedge \hat{\nu}_3 - \hat{\nu}_1 \wedge \bar{\partial} \hat{\nu}_2 \wedge \hat{\nu}_3 + \hat{\nu}_1 \wedge \hat{\nu}_2 \wedge \bar{\partial} \hat{\nu}_3 \right) \wedge dz_1 \wedge \dots \wedge dz_4$$

insert $dp \wedge d\bar{p} \delta^2(p)$
use $\delta^2(p) d\bar{p} = \frac{1}{\pi} \bar{\partial} \left(\frac{1}{p} \right)$ and $\hat{\Omega} \wedge dp = dz_1 \wedge \dots \wedge dz_4$

• Case 1: All ν_i are of type 1: $\Rightarrow \quad \bar{\partial}\hat{\nu}_i = 0$

$$\lambda(\nu_1,\nu_2,\nu_3)=0$$

Yukawa couplings vanish due to structure of cohomology.

• Case 2: ν_3 is type 2, other ν_i are type 1:

 $\Rightarrow \quad \bar{\partial}\hat{\nu}_3 = p\hat{\omega} \\ \Rightarrow \quad \bar{\partial}\hat{\nu}_i = 0$

$$\lambda(\nu_1,\nu_2,\nu_3) = \frac{1}{\pi} \int_{\mathbb{C}^4} \hat{\nu}_1 \wedge \hat{\nu}_2 \wedge \hat{\omega} \wedge dz_1 \wedge \dots \wedge dz_4$$

$$= \frac{1}{\pi} \int_{\mathbb{C}^4} \kappa_1^{k_{1,1}} \kappa_2^{k_{2,2}} \kappa_3^{k_{3,3}-2} \kappa_4^{k_{3,4}-2} P_{(\mathbf{k}_1)} Q_{(\mathbf{k}_2)} R_{(\mathbf{k}_3-\mathbf{q})} d^4 z \, d^4 \bar{z}$$

Can always be explicitly integrated, or calculated algebraically:

$$\lambda(\nu_1, \nu_2, \nu_3) = 16\pi^3 c\mu(P, Q, R) \qquad \qquad \mu(P, Q, R) = \tilde{P}\tilde{Q}\tilde{R}$$

• Case 3: More than one ν_i originates from ambient 2-form

Slightly more complicated but can always be integrated.

Generalisation and a vanishing theorem

Co-dimension k CICY in ambient space $\mathcal{A} = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$:

$$X \sim \begin{bmatrix} \mathbb{P}^{n_1} & Q_1^1 & \cdots & Q_k^1 \\ \vdots & \vdots & \vdots & \vdots \\ \mathbb{P}^{n_m} & Q_1^m & \cdots & Q_k^m \end{bmatrix} \xrightarrow{\mathsf{K}} \text{ defining polynomials}$$

Line bundle cohomology for $K=\mathcal{K}|_X$, $\ \mathcal{K}\to \mathcal{A}$ from:

$$0 \to \wedge^k \mathcal{N}^* \otimes \mathcal{K} \to \wedge^{k-1} \mathcal{N}^* \otimes \mathcal{K} \to \dots \to \mathcal{N}^* \otimes \mathcal{K} \to \mathcal{K} \to \mathcal{K} \to 0$$

 $\nu \in H^1(X, K)$ is called "type τ ", where $\tau = 1, \ldots, k + 1$, if it descends from $\hat{\omega} \in H^{\tau}(\mathcal{A}, \wedge^{\tau-1}\mathcal{N}^* \otimes \mathcal{K})$.

$$\lambda(\nu_1,\nu_2,\nu_3) = \int_X \Omega \wedge \nu_1 \wedge \nu_2 \wedge \nu_3 \quad \text{ where } \nu_i \text{ are of type } \tau_i$$

Vanishing theorem:

If
$$\tau_1 + \tau_2 + \tau_3 < \dim(\mathcal{A})$$
 then $\lambda(\nu_1, \nu_2, \nu_3) = 0$.

Implies vanishing of many Yukawa couplings, in particular at higher co-dimension.

Formulation independent of embedding space?

Examples

Example 1: A tetra-quadric SO(10) model with vanishing Yukawa couplings

$$L_1 = \mathcal{O}_X(-1, 0, 0, 1), \quad L_2 = \mathcal{O}_X(0, -2, 1, 3)$$

 $L_3 = \mathcal{O}_X(0, 0, 1, -3), \quad L_4 = \mathcal{O}_X(1, 2, -2, -1)$

spectrum: $8 \ 16_2, \ 4 \ 16_3, \ 3 \ 10_{1,4}, \ 3 \ 10_{2,3}$ plus singlets

Yukawa couplings:
$$\lambda_{IJK} \mathbf{10}_{1,4}^{(I)} \mathbf{16}_{2}^{(J)} \mathbf{16}_{3}^{(K)}$$

 $K_{1} = L_{1} \otimes L_{4} = \mathcal{O}_{X}(0, 2, -2, 0)$ $K_{2} = L_{2} = \mathcal{O}_{X}(0, -2, 1, 3)$ $K_{3} = L_{3} = \mathcal{O}_{X}(0, 0, 1, -3)$

But all ν_i are of type 1 so that $\lambda_{IJK} = 0$.

Example 2: up-Yukawa couplings for SU(5) model on tetra-quadric

Standard model based on SU(5) GUT with line bundles

 $L_1 = \mathcal{O}_X(-1, 0, 0, 1) , \ L_2 = \mathcal{O}_X(-1, -3, 2, 2) , \ L_3 = \mathcal{O}_X(0, 1, -1, 0)$ $L_4 = \mathcal{O}_X(1, 1, -1, -1) , \ L_5 = \mathcal{O}_X(1, 1, 0, -2)$

spectrum: 810₂, 410₅, 4 $\overline{5}_{2,4}$, 3 $\overline{5}_{2,5}^H$, 8 $\overline{5}_{4,5}$, 35 $\overline{\frac{H}{2,5}}$ 121_{2,1}, 121_{5,1}, 201_{2,3}, 121_{2,4}, 41_{5,3}

Relevant line bundles for up-Yukawa coupling:

$$\begin{array}{lll} K_1 = L_2^* \otimes L_5^* & 3 \, \mathbf{5}_{2,5}^H & \hat{\nu}_1 = \kappa_3^{-2} Q_{(0,2,-2,0)} d\bar{z}_3 & \mbox{type 1} \\ K_2 = L_5 & 4 \, \mathbf{10}_2 & \hat{\nu}_2 = \kappa_4^{-2} R_{(1,1,0,-2)} d\bar{z}_4 & \mbox{type 1} \\ K_3 = L_2 & 8 \, \mathbf{10}_5 & \hat{\omega} = \kappa_1^{-3} \kappa_2^{-5} S_{(-3,-5,0,0)} d\bar{z}_1 \wedge d\bar{z}_2 & \mbox{type 2} \end{array}$$

where

$$Q = q_0 + q_1 z_2 + q_2 z_2^2$$

$$R = r_0 + r_1 z_1 + r_2 z_2 + r_3 z_1 z_2$$

$$S = s_0 + s_1 \bar{z}_2 + s_2 \bar{z}_2^2 + s_3 \bar{z}_2^3 + s_4 \bar{z}_1 + s_5 \bar{z}_1 \bar{z}_2 + s_6 \bar{z}_1 \bar{z}_2^2 + s_7 \bar{z}_1 \bar{z}_2^3$$

Yukawa couplings, explicit calculation:

$$\begin{split} \lambda(Q,R,S) &= \frac{1}{\pi} \int_{\mathbb{C}^4} \frac{QRS}{\kappa_1^3 \kappa_2^5 \kappa_3^2 \kappa_4^2} d^4 z \, d^4 \bar{z} \\ &= \frac{2\pi^3}{3} \left[3q_0 r_0 s_0 + 3q_0 r_1 s_4 + q_0 r_2 s_1 + q_0 r_3 s_5 + q_1 r_0 s_1 + q_1 r_1 s_5 + q_1 r_2 s_2 + q_1 r_3 s_6 + q_2 r_0 s_2 + q_2 r_1 s_6 + 3q_2 r_2 s_3 + 3q_2 r_3 s_7 \right] \end{split}$$

Yukawa couplings, algebraic calculation:

$$\tilde{Q} = q_0 y_0^2 + q_1 y_0 y_1 + q_2 y_1^2$$

$$\tilde{R} = r_0 x_0 y_0 + r_1 x_1 y_0 + r_2 x_0 y_1 + r_3 x_1 y_1$$

$$\tilde{S} = s_0 x_0 y_0^3 + s_1 x_0 y_0^2 y_1 + s_2 x_0 y_0 y_1^2 + s_3 x_0 y_1^3 + s_4 x_1 y_0^3 + s_5 x_1 y_0^2 y_1 + s_6 x_1 y_0 y_1^2 + s_7 x_1 y_1^3$$

$$\mu(Q, R, S) = (q_0 \partial_{y_0}^2 + q_1 \partial_{y_0} \partial_{y_1} + q_2 \partial_{y_1}^2) (r_0 \partial_{x_0} \partial_{y_0} + r_1 \partial_{x_1} \partial_{y_0} + r_2 \partial_{x_0} \partial_{y_1} + r_3 \partial_{x_1} \partial_{y_1}) (s_0 x_0 y_0^3 + s_1 x_0 y_0^2 y_1 + s_2 x_0 y_0 y_1^2 + s_3 x_0 y_1^3 + s_4 x_1 y_0^3 + s_5 x_1 y_0^2 y_1 + s_6 x_1 y_0 y_1^2 + s_7 x_1 y_1^3) = 2 [3q_0 r_0 s_0 + 3q_0 r_1 s_4 + q_0 r_2 s_1 + q_0 r_3 s_5 + q_1 r_0 s_1 + q_1 r_1 s_5 + q_1 r_2 s_2 + q_1 r_3 s_6 + q_2 r_0 s_2 + q_2 r_1 s_6 + 3q_2 r_2 s_3 + 3q_2 r_3 s_7] .$$

After taking quotient by $\Gamma = \mathbb{Z}_2 \times \mathbb{Z}_2$ and adding Wilson line:

$$\lambda^{(u)} = \frac{\pi^3}{3} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Example 3: singlet-Yukawa couplings in SU(5) model on tetra-quadric

The same model has a coupling

$$\mathbf{1}_{2,4}\, ar{\mathbf{5}}_{4,5}\, \mathbf{5}_{2,5}$$

with associated line bundles

$$K_{1} = L_{2} \otimes L_{4}^{*} = \mathcal{O}_{X}(-2, -4, 3, 3) \rightarrow 12 \mathbf{1}_{2,4} \in \delta^{-1} \operatorname{Ker} \left(H^{2}(\mathcal{O}_{\mathcal{A}}(-4, -6, 1, 1) \xrightarrow{p} H^{2}(\mathcal{O}_{\mathcal{A}}(-2, -4, 3, 3)) \right)$$

$$K_{2} = L_{4} \otimes L_{5} = \mathcal{O}_{X}(2, 2, -1, -3) \rightarrow 8 \mathbf{\overline{5}}_{4,5} \in \delta^{-1} H^{2}(\mathcal{O}_{\mathcal{A}}(0, 0, -3, -5)) \xrightarrow{\mathsf{type 2}} \mathbf{1}$$

$$K_{3} = L_{2}^{*} \otimes L_{5}^{*} = \mathcal{O}_{X}(0, 2, -2, 0) \rightarrow 3 \mathbf{5}_{2,5} \in H^{1}(\mathcal{O}_{\mathcal{A}}(0, 2, -2, 0)) \xrightarrow{\mathsf{type 1}} \mathbf{1}$$

 a_0, \ldots, a_{14}

and differential forms

$$\hat{\omega}_{1} = \kappa_{1}^{-4} \kappa_{2}^{-6} Q_{(-4,-6,1,1)} d\bar{z}_{1} \wedge d\bar{z}_{2} \quad \text{where} \quad \tilde{p}\tilde{Q} = 0 \hat{\omega}_{2} = \kappa_{3}^{-3} \kappa_{4}^{-5} R_{(0,0,-3,-5)} d\bar{z}_{3} \wedge d\bar{z}_{4} \hat{\nu}_{3} = \kappa_{3}^{-2} S_{(0,2,-2,0)} d\bar{z}_{3} \quad b_{0}, b_{1}$$

Yukawa couplings for a 5-parameter family of tetra-quadrics:

$$\lambda(\nu_1, \nu_2, \nu_3) = -\frac{1}{\pi} \int_{\mathbb{C}^4} \frac{Q\mathcal{R}S}{\kappa_1^4 \kappa_2^6 \kappa_3^4 \kappa_4^5} d^4 z \, d^4 \bar{z}$$

 $= \frac{\pi^3}{3240} \left(2a_{14}b_1c_1 + 9a_{12}b_0c_2 + 9a_{13}b_0c_2 - 8a_4b_1c_2 - 8a_5b_1c_2 + 3a_{12}b_1c_2 + 3a_{13}b_1c_2 - 36a_7b_0c_3 - 12a_2b_1c_3 - 12a_{14}b_0c_4 + 6a_2b_1c_4 + 6a_3b_1c_4 - 6a_6b_1c_4 - 6a_7b_1c_4 + 4a_{14}b_1c_4 - 36a_6b_0c_5 - 12a_3b_1c_5 - 36a_2b_0c_6 - 36a_3b_0c_6 - 12a_6b_1c_6 - 12a_7b_1c_6 \right)$

Still need to find kernel $M\mathbf{a} = 0$ where

		$/ 24c_6$	0	0	0	$4c_{3}$	$4c_{6}$	0	0	0	$24c_{5}$	0	0	$3c_4$	0	0
	=	$24c_{5}$	0	$6c_2$	0	$4c_6$	$4c_3$	0	$6c_2$	0	$24c_{6}$	0	0	$-3c_{4}$	0	0
		$24c_{4}$	$24c_{6}$	0	$6c_2$	$4c_6 - 4c_4$	$4c_3 + 4c_4$	$6c_2$	0	$24c_{5}$	$-24c_{4}$	$12c_{2}$	0	$3c_1$	$3c_4$	$2c_2$
		0	$24c_{5}$	0	0	$4c_3$	$4c_6$	0	0	$24c_{6}$	0	$12c_{2}$	0	0	$-3c_{4}$	$2c_2$
7		$24c_{3}$	0	0	0	$4c_6$	$4c_5$	0	0	0	$24c_{6}$	0	$12c_{2}$	$-3c_{4}$	0	$2c_2$
M =		$24c_{6}$	$24c_4$	$6c_2$	0	$4c_4 + 4c_5$	$4c_6 - 4c_4$	0	$6c_2$	$-24c_{4}$	$24c_{3}$	0	$12c_{2}$	$3c_4$	$3c_1$	$2c_2$
111		0	$24c_{3}$	0	$6c_2$	$4c_5$	$4c_6$	$6c_2$	0	$24c_{6}$	0	0	0	0	$-3c_{4}$	0
		0	$24c_{6}$	0	0	$4c_6$	$4c_5$	0	0	$24c_{3}$	0	0	0	0	$3c_4$	0
		0	0	$12c_{6}$	$12c_{6}$	$8c_2$	$8c_2$	$12c_{3}$	$12c_{5}$	0	0	0	0	0	0	$4c_4$
		0	0	$12c_{5}$	$12c_{3}$	0	0	$12c_{6}$	$12c_{6}$	0	0	0	0	0	0	$-4c_{4}$
		0	0	$12c_{6}$	$12c_{6}$	0	0	$12c_{5}$	$12c_{3}$	0	0	0	0	$6c_2$	$6c_2$	$4c_4$
		0	0	$12c_3 + 12c_4$	$12c_4 + 12c_5$	$8c_2$	$8c_2$	$12c_6 - 12c_4$	$12c_6 - 12c_4$	0	0	0	0	$6c_2$	$6c_2$	$4c_1 - 4c_4$

The Yukawa coupling

$$\lambda_{ij}S^iL^j\bar{H}$$

then becomes

$$\lambda = \frac{\pi^3}{180} \begin{pmatrix} 0 & (c_3 - c_5) \left(4c_4^2 + c_1 \left(c_3 + c_5 - 2c_6 \right) \right) \left(c_3 + c_5 + 2c_6 \right) \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

This is generically rank 1, but will be generally rank 2 away from the 5-parameter family. For $c_3=c_5$ the Higgs remains massless even if $\langle S^i \rangle \neq 0$.

Yukawa unification?

Consider, for example, SU(5) GUT with $\Gamma = \mathbb{Z}_2$ and down-Yukawa:

Wilson line described by Γ -representations χ_2 , χ_3 satisfying $\chi_2^2 \otimes \chi_3^3 = 1$. For $\Gamma = \mathbb{Z}_2$ we have $\chi_2 = (1)$ and $\chi_3 = (0)$.

$$\chi_{H} = \chi_{2}^{*} = (1) \qquad \begin{array}{l} \chi_{d} = \chi_{3}^{*} = (0) & \chi_{Q} = \chi_{2} \otimes \chi_{3} = (1) \\ \chi_{L} = \chi_{2}^{*} = (1) & \chi_{e} = \chi_{2} \otimes \chi_{2} = (0) \end{array}$$

 $\lambda^{(e)}$ and $\lambda^{(d)}$ are (in general) unrelated!

This holds for any symmetry Γ and all types of Yukawa couplings.

In heterotic GUT models with Wilson line breaking Yukawa unification in the traditional sense (i.e. enforced by the GUT symmetry) never arises.

Q: Can Yukawa unification arise from additional symmetries of the upstairs theory, e.g. from Γ and additional U(1)'s?

A unification scenario for an SU(5) line bundle model

Line bundle sum $V = \bigoplus_{a=1}^{\circ} L_a$

Upstairs gauge group $SU(5) \times \hat{J}, \ \hat{J} = S(U(1)^5)$ and $\ \Gamma = \mathbb{Z}_2$

Assumed spectrum: $\mathcal{V}_{10} = \text{Span}(10_4, 10_5)$, $\mathcal{V}_{\bar{5}} = \text{Span}(\bar{5}_{1,2}^H, \bar{5}_{3,4}, \bar{5}_{3,5})$

$$\hat{J} - \text{representations:} \quad R_{10}(\alpha) = \text{diag}\left(e^{i\mathbf{e}_{4}\cdot\alpha}, e^{i\mathbf{e}_{5}\cdot\alpha}\right) R_{\bar{\mathbf{5}}}(\alpha) = \text{diag}\left(e^{i(\mathbf{e}_{1}+\mathbf{e}_{2})\cdot\alpha}, e^{i(\mathbf{e}_{3}+\mathbf{e}_{4})\cdot\alpha}, e^{i(\mathbf{e}_{3}+\mathbf{e}_{5})\cdot\alpha}\right)$$

$$\mathbb{Z}_2\text{-representations: } \rho_{10}(-1) = \sigma , \qquad \rho_{\overline{5}}(-1) = \operatorname{diag}(-1, \sigma) , \qquad \sigma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Upstairs Yukawa coupling: $\hat{W} = \bar{\mathbf{5}}_{1,2}^H (\bar{\mathbf{5}}_{3,4}, \bar{\mathbf{5}}_{3,5}) \hat{Y} \begin{pmatrix} \mathbf{10}_4 \\ \mathbf{10}_5 \end{pmatrix}$ $\hat{Y} = 2Y = \begin{pmatrix} 0 & y \\ y' & 0 \end{pmatrix}$

Downstairs this leads to Yukawa unification, $Y^{(e)} = Y^{(d)}$, for one family.

I this way, Yukawa unification can be engineered for one family but not the other two.

An example for Yukawa unification

$$\hat{X} \sim \begin{bmatrix} \mathbb{P}^{1} & 1 & 0 & 1 & 0 & 0 \\ \mathbb{P}^{1} & 1 & 0 & 1 & 0 & 0 \\ \mathbb{P}^{1} & 0 & 1 & 0 & 0 & 1 \\ \mathbb{P}^{1} & 0 & 1 & 0 & 0 & 1 \\ \mathbb{P}^{2} & 1 & 0 & 0 & 1 & 1 \\ \mathbb{P}^{2} & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow[-40]{} \begin{array}{c} \boldsymbol{y} = (y_{0}, y_{1}, y_{2})^{T} \\ \boldsymbol{y} = (z_{0}, z_{1}, z_{2})^{T} \\ \mathcal{N}_{1} \cdots \mathcal{N}_{5} \end{bmatrix}$$

$$\mathbb{Z}_2-\text{symmetry:} \quad x_{i,\alpha} \to (-1)^{\alpha+1} x_{i,\alpha} , \quad \mathbf{y} \leftrightarrow \mathbf{z}$$
$$\mathcal{N}_1 \leftrightarrow \mathcal{N}_3 , \quad \mathcal{N}_2 \leftrightarrow \mathcal{N}_5 , \quad \mathcal{N}_4 \to \mathcal{N}_4$$

line bundles: $L_1 = \mathcal{O}_{\hat{X}}(-1, 0, -1, 1, 0, 0)$, $L_2 = \mathcal{O}_{\hat{X}}(2, 1, 2, 0, -1, -1)$, $L_3 = \mathcal{O}_{\hat{X}}(1, 1, -1, -1, 0, 0)$, $L_4 = \mathcal{O}_{\hat{X}}(-1, -1, 0, 0, 0, 1)$, $L_5 = \mathcal{O}_{\hat{X}}(-1, -1, 0, 0, 1, 0)$.

Right multiplets and representations of $S(U(1)^5)$ and \mathbb{Z}_2 for unification scenario:

$$\hat{W} = \bar{\mathbf{5}}_{1,2}^{H} (\bar{\mathbf{5}}_{3,4}, \bar{\mathbf{5}}_{3,5}) \hat{Y} \begin{pmatrix} \mathbf{10}_{4} \\ \mathbf{10}_{5} \end{pmatrix}, \qquad \hat{Y} = 2Y = \begin{pmatrix} 0 & y \\ y' & 0 \end{pmatrix}$$

type 4 type 2

Vanishing theorem does not apply!

We have checked by explicit computation, using the above methods, that $y,y'\neq 0$.

Conclusion

- We can compute the holomorphic (perturbative) Yukawa couplings for heterotic line bundle models on CICYs, both algebraically and in terms of differential geometry.
- Complex structure dependence can be worked out explicitly.
- Many Yukawa couplings are zero perturbatively due to a topological vanishing theorem.
- Underlying GUT symmetry of models never leads to Yukawa unification.
- Partial Yukawa unification can be induced by an interplay of discrete and U(1) symmetries.

 Generalisation to CYs defined in more general toric ambient spaces and to bundles with non-Abelian structure group possible.

 Most pressing outstanding problem is the calculation of the matter field Kahler metric -> physical Yukawa couplings.

