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Introduction

Supersymmetric gauge theories in two dimensions

Two-dimensional supersymmetric gauge theories—a.k.a. GLSM—are
an interesting playground for the quantum field theorist.

I They exhibit many of the qualitative behaviors of their
higher-dimensional cousins.

• also useful to describe surface operators in 4d
I Supersymmetry allows us to perform exact computations.
I They provide useful UV completions of non-linear σ-models,

including conformal ones, and of other interesting 2d SCFTs.
I Consequently, they are useful tools for string theory and

enumerative geometry:
• N = (2, 2) susy: type II string theory compactifications.
• N = (0, 2) susy: heterotic compactifications.
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Introduction

GLSM Observables

Consider a GLSM with at least one U(1) factor. We have the
complexified FI parameter

τ =
θ

2π
+ iξ

which is classically marginal in 2d. ξ � 1 is a large volume limit.

Schematically, expectation values of appropriately supersymmetric
local operators O have the expansion

〈O〉 ∼
∑

k

qkZk(O) , q = e2πiτ .

The 2d instantons are gauge vortices.

Cyril Closset (SCGP) (0, 2) localization IHP, May 31, 2016 3 / 35



Introduction

GLSM supersymmetric observables: the (2, 2) case
For theories with N = (2, 2) supersymmetry, we can consider the
half-BPS operators:

I [Q̃−,O] = [Q̃+,O] = 0 (chiral ring)
I [Q−,O] = [Q̃+,O] = 0 (twisted chiral ring)

These operators have non-singular OPE:

OaOb ∼ Cab
cOc

The corresponding chiral rings are captured by TFTs:

〈OaOb · · · 〉Σg

defined by a topological twist of the ‘physical’ theory [Witten, 1988]:
I chiral ring ↔ B-twist
I twisted chiral ring ↔ A-twist
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Introduction

GLSM supersymmetric observables: the (2, 2) case

If we consider ‘ordinary’ gauge theories of vector and chiral multiplets:

V(2,2) = (aµ, σ, σ̃, λ, λ̃,D) , Φ(2,2) = (φ, φ̃, ψ, ψ̃,F, F̃)

the simplest chiral and twisted chiral ring operators are holomorphic
polynomials in φ and σ, respectively:

Occ = P(φ) , Oac = P(σ)

This is far from the full story, but enough for our purpose.
We will focus on the twisted chiral operators:

Tr(σp) , p = 0, 1, 2, · · ·

For theories that flow to a NLSM onto a Kähler manifold X, these
operators flow to cohomology classes Hp,p(X) in the IR.
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Introduction

GLSM supersymmetric observables: (2, 2) case

In particular, for X3 a CY threefold, the genus-zero correlators

〈TrI(σ) TrJ(σ) TrK(σ)〉CP1 = YIJK(q) , I, J,K = 1, · · · , h1,1(X3)

compute the holomorphic Yukawa couplings of the type II
compactification on X3, albeit in the algebraic coordinates q = z.
They can often be computed using mirror symmetry.

For non-abelian GLSMs, we generally have more independent
correlators of the form:

〈Tr(σp1) Tr(σp2) · · · 〉

They can be computed by localization. [Morrison, Plesser, 1994]

[Szenes, Vergne, 2003]

[CC, Cremonesi, Park, 2015]
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Introduction

N = (0, 2) observables

A priori, the above would not generalize to (0, 2) theories, which only
have two right-moving supercharges with

Q2
+ = 0 , Q̃2

+ = 0 {Q+, Q̃+} = −4Pz̄ .

Half-BPS operators are Q̃+-closed, and generally do not form a ring
but a chiral algebra:

Oa(z)Ob(0) ∼
∑

c

fabc

zsa+sb−sc
Oc(z)

In some favorable cases with an extra U(1)L symmetry, there exists a
subset of the Oa, of spin s = 0, with trivial OPE. These pseudo-chiral
rings are also known as “topological heterotic rings".

[Adams, Distler, Ernebjerg, 2006]
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Introduction

N = (0, 2) localization: new result
In this talk, we will motivate a simple localization formula for some
pseudo-chiral ring correlation functions in (0, 2) models with a
“Coulomb branch”—-in particular, GLSMs with a “(2, 2) locus”.

[CC, Gu, Jia, Sharpe, 2015]

For “Coulomb branch operators” similar to the (2, 2) case, we have:

〈O(σ)〉CP1 =
∑

k

qk
∮

JKG

dσ
2πi

Z1-loop
k (σ)O (σ)

for the so-called A/2-twist.

This can be generalized to correlators on Σg using recent results.
[CC, Kim, 2016]
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Introduction

Outline

N = (0, 2) models and quantum sheaf cohomology
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N = (0, 2) models and quantum sheaf cohomology

N = (0, 2) observables: Quantum sheaf cohomology

Consider a NLSM:
Σ −→ E

where E is an holomorphic vector bundle over the Kähler manifold X:

V → E → X .

The local coordinates on X are in chiral multiplets Φi = (φi, ψi) and the
local coordinates on the fiber V are in Fermi multiplets ΛI = (ΛI,EI).

The ‘simplest’ Q̃+-closed operators are of the form:

ω = ωi1···iqI1···Ip(φ, φ̃) ψ̃i1 · · · ψ̃iqΛI1 · · ·ΛIp , ∂̄ω = 0 .

They correspond to sheaf cohomology classes Hq(X,ΛpE∗).

We would like to “UV complete” this guys in a GLSM description.
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N = (0, 2) models and quantum sheaf cohomology

Aside: Curved-space rigid supersymmetry
For massive theories, there is only one way to preserve
supersymmetry on the sphere, unlike the (2, 2) case.

More precisely, assuming that we have a massive N = (0, 2) theory
(such as the GLSM) preserving U(1)R, the theory has an R-multiplet
Rµ = (j(R)

µ , Sµ,Tµν) [Dumitrescu, Seiberg, 2011] which couples to the metric
and its superpartners in the usual way:

L =
1
2

∆gµνTµν + A(R)
µ jµ(R) + ΨµSµ .

It is easy to show that the only supersymmetric background à la
[Festuccia, Seiberg, 2011] on Σg is the half-topological twist. [Witten, 1994]

(In particular, there exists no (0, 2) Ω-background.)

This entails a choice of R-symmetry. Different choices can lead to
‘twisted theories’ with different properties.
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Localizing (0, 2) GLSMs with a (2, 2) locus

(0, 2) GLSM with a (2, 2) locus and A/2-twist

We will focus on (0, 2) supersymmetric GLSMs with a (2, 2) locus.
Schematically, they are determined by the following (0, 2) matter
content:

I A vector multiplet V and a chiral Σ in the adjoint of the gauge
group G, with g = Lie(G).

I Pairs of chiral and Fermi multiplets Φi and Λi, in representations
Ri of g.

The interactions are encoded in two sets of holomorphic functions of
the chiral multiplets Ei and Ji.

We also turn on an FI term τ I for each U(1)I in G.
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Localizing (0, 2) GLSMs with a (2, 2) locus

(0, 2) GLSM with a (2, 2) locus and A/2-twist

We assign the R-charges:

RA/2[Σ] = 0 , RA/2[Φi] = ri , RA/2[Λi] = ri − 1 ,

which is always anomaly-free.

We can define the theory on a curved two-manifold Σg by an half-twist:

S = S0 +
1
2

RA/2 ,

preserving one supercharge Q̃ ∼ Q̃+.
The R-charges ri must be integers (typically, ri = 0 or 2).
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Localizing (0, 2) GLSMs with a (2, 2) locus

(0, 2) GLSM with a (2, 2) locus and A/2-twist

As a further assumption, we preserve a certain additional flavor U(1)L

symmetry classically.

It is convenient to write it as L = Rax − RA/2 with Rax the ‘axial’
R-symmetry:

Rax[σ] = 2 , Rax[φi] = 0 , Rax[Λi] = 1 .

This is generally anomalous except for theories that flow to CFTs. In
any case, it constrains us to choose a potential Ei linear in Σ and a
potential Ji independent of Σ:

Ei(Σ,Φ) = ΣEi(Φ) , Ji = Ji(Φ)
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Localizing (0, 2) GLSMs with a (2, 2) locus

The Coulomb branch of theories with a (2, 2) locus

It is very useful to study the classical “Coulomb branch” spanned by
the scalar σ in Σ:

σ = diag(σa) , a = 1, · · · , rank(g)

The matter fields obtain a mass

Mij = ∂jEi
∣∣
φ=0 = σa ∂jEa

i

∣∣
φ=0 .

By gauge invariance, Mij is block-diagonal, with each block spanned by
fields with the same gauge charges. We denote these blocks by Mγ .

Note: On the (2, 2) locus, Mij = δijQi(σ).

Let us denote by M̃ ∼= hC ∼= Crank(G) the covering space of the classical
Coulomb branch, spanned by {σa}.
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Localizing (0, 2) GLSMs with a (2, 2) locus

The Coulomb branch and Jeff

Since the matter fields are massive, we can integrate them out to
obtain an effective theory on the “Coulomb branch”.

Recall that the field strength fµν and the gaugini sit in a
Fermi multiplet Y with the associated holomorphic potentials:

EY = 0 , JY = τ ,

If we integrate out the matter fields at a generic point on the Coulomb
branch, we obtain the effective couplings:

(Jeff
Y )a = τ a − 1

2πi

∑
γ

∑
ργ∈Rγ

ρa
γ log

(
det M(γ, ργ)

)
− 1

2

∑
α>0

αa

[McOrist, Melnikov, 2007]

This also encodes the RG running of τ .
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Localizing (0, 2) GLSMs with a (2, 2) locus

Pseudo-chiral ring relations from Jeff

In analogy with the discussion of the twisted chiral ring of N = (2, 2)
theories, let us call the equations:

(Jeff
Y )a(σ) = 0 , α(σ) 6= 0

the “Bethe equations” of the (0, 2) GLSM defined above. Note that we
impose that any solution σ̂ = {σ̂a} should be away from the walls of the
Weyl chambers in M̃.

We expect that the ‘Coulomb branch’ operators Tr(σp) form a
pseudo-chiral ring. Their algebra is encoded in Jeff according to:

A = C[σa]WG/IBE

where IBE is the ideal generated by the relations satisfied by the
solutions to the Bethe equations. (We will show this in a moment.)
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Localizing (0, 2) GLSMs with a (2, 2) locus

Sheaf cohomology relations from Jeff

For GLSMs that flow to a NLSM over X, we have the well-motivated
conjecture:

Tr(σp) −→ ω ∈ Hp(X,ΛpE∗)

In the theories we are considering, E is a deformation of the
holomorphic tangent bundle TX.

Then the ring A defined above is a sub-ring of the full (conjectured)
quantum sheaf cohomology ring.

In simple-enough cases, it is the full QSC. For instance:
I Toric varieties
I Grassmannian manifold, flag manifolds

with E a deformation of TX are “simple enough” in that sense.
see e.g. [Donagi, Guffin, Katz, Sharpe, 2011]
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Localizing (0, 2) GLSMs with a (2, 2) locus

Localization on the Coulomb branch
We would like to compute

〈O(σ)〉A/2
CP1

in a way similar to recent computations of the elliptic genus [Benini, Eager,

Hori, Tachikawa, 2013] and of A-twisted correlators on CP1 [CC, Cremonesi, Park,

2015] for GLSMs.

We use:
〈O(σ)〉A/2

CP1 = 〈O(σ) e−Sloc〉A/2
CP1

with
Sloc =

1
e2 (SYM + SΣ) +

1
g2

∑
i

(SΦi + SΛi) = Q̃(· · · )

and take the e, g→ 0 limit.
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Localizing (0, 2) GLSMs with a (2, 2) locus

Localization on the Coulomb branch
The path integral localizes onto the ‘zero-modes’ of the vector multiplet
on CP1:

V0 = (λ̃, D̂) , Σ0 = (σ, σ̃, ψ̃σ)

They are constant modes on the sphere with the A/2-twist.
(In particular, λ̃ and ψ̃σ have twisted spin s = 0.)

We can go onto the classical Coulomb branch:

σ = diag(σa) , a = 1, · · · , rank(G)

Diagonalizing the full vector multiplet leads to a sum over
GNO-quantized fluxes: [Blau, Thompson, 1994]

1
2π

∫
CP1

da = k ∈ ΓG∨
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Localizing (0, 2) GLSMs with a (2, 2) locus

Localization on the Coulomb branch
The matter fields are massive at generic values of
the ‘background’ V0,Σ0, and we can integrate them out:

〈O(σ)〉A/2
CP1 =

∑
k

qk
∫

[dV0 dΣ0] Zk(V0,Σ0) O(σ)

Here Zk(V0,Σ0) is a superdeterminant which one can compute in
various ways.

The integration over fermionic zero modes λ̃, ψ̃σ has to be done
carefully, but fortunately we can follow previous literature.

Supersymmetry is of great help:

δZk =
(

D̂∂λ̃ + ψ̃σ∂σ̃

)
Zk = 0

This helps convert the integral over the classical Coulomb branch
into a contour integral.
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Localizing (0, 2) GLSMs with a (2, 2) locus

A residue formula for A/2-model correlators on S2

In this way, one can argue that our A/2-twisted correlators on S2 are
given by:

〈O(σ)〉A/2
CP1 =

1
|WG|

∑
k

∮
JKG

rank(G)∏
a=1

[
dσa qka

a
]

Z1-loop
k (σ)O (σ)

with

Z1-loop
k (σ) = (−1)

∑
α>0(α(k)+1)

∏
α>0

α(σ)2
∏
γ

∏
ργ∈Rγ

(
det M(γ, ργ)

)rγ−1−ργ(k)

Here we have a new residue prescription generalizing the
Jeffrey-Kirwan residue relevant on the (2, 2) locus.
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Localizing (0, 2) GLSMs with a (2, 2) locus

The Jeffrey-Kirwan-Grothendieck residue
In the (2, 2) case, the Jeffrey-Kirwan residue determines a way to pick
a middle-dimensional contour in

Cr − ∪i∈IHi , I = {i1, · · · , is} (s ≥ r) Hi = {σa |Qi(σ) = 0} ,

when the integrand has poles on Hi only. (Here r = rank(G).)

For generic (0, 2) deformations, we have an integrand with singularities
on more general divisors of M̃ ∼= Cr:

Dγ = {σa |Pγ(σ) = 0} ,

which intersect at the origin only.

We introduced the notation

Pγ(σ) = det Mγ ∈ C[σ1, · · · , σr] , (r = rank(G))

which is a homogeneous polynomial of degree nγ ≥ 1 in σ.
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Localizing (0, 2) GLSMs with a (2, 2) locus

The Jeffrey-Kirwan-Grothendieck residue

To define the relevant Jeffrey-Kirwan-Grothendieck (JKG) residue, we
introduce the data P = {Pγ} and Q = {Qγ} of divisors Dγ and
associated gauge charges Qγ . The residue is defined by its action on
the holomorphic forms:

ωS = dσ1 ∧ · · · ∧ dσr P0

∏
b∈S

1
Pb

,

with S = {γ1, · · · , γr}, which is

JKG-Res[η] ωS =

{
sign (det(QS)) Res(0) ωS if η ∈ Cone(QS) ,

0 if η /∈ Cone(QS)

with Res(0) the (local) Grothendieck residue at the origin.
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Localizing (0, 2) GLSMs with a (2, 2) locus

The Jeffrey-Kirwan-Grothendieck residue
The Grothendieck residue itself is defined as:

Res(0) ωS =
1

(2πi)r

∮
Γε

dσ1 ∧ · · · ∧ dσr
P0

Pγ1 · · ·Pγr

with the real r-dimensional contour:

Γε =
{
σ ∈ Cr

∣∣ |Pγ1 | = ε1 , · · · , |Pγr | = εr
}

and it is eminently computable.

Finally, we should take η = ξUV
eff to cancel the “boundary contributions”

from infinity on the Coulomb branch.

We really made two conjectures here: (1) The JKG actually exists as a
local residue with nice properties. (2) It is the correct contour integral
chosen by the path integral localization. (Full proof for U(1) case only.)
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Localizing (0, 2) GLSMs with a (2, 2) locus

Generalization to Σg

Following recent work [CC, Kim, 2016; Benini, Zaffaroni, 2016], we can easily
generalize the above to a closed orientable Riemann surface Σg:

〈O(σ)〉A/2
Σg

=
1
|W|

∑
k

∮
JKG

rank(G)∏
a=1

[
dσa qka

a
]

Z1-loop
g,k (σ) H(σ)g O (σ)

with
Z1-loop

g,k (σ) = (−1)
∑
α>0(α(k)+1)

∏
α>0

α(σ)2(1−g)

×
∏
γ

∏
ργ∈Rγ

(
det M(γ, ργ)

)−(g−1)(rγ−1)−ργ(k)

and
H(σ) = det

ab

(
∂σbJeff

a
)
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Localizing (0, 2) GLSMs with a (2, 2) locus

Relation to the Bethe equations
By performing the sum over topological sectors (at least formally), one
can rewrite the above result as:

〈O(σ)〉A/2
Σg

=
∑
σ̂∈SBE

H(σ̂)g−1 O(σ̂)

with
H(σ) =

(
Z1-loop

0,0 (σ)
)−1

H(σ)

the ‘handle-gluing operator’. The sum is over distinct solutions to the
‘Bethe equations’

(Jeff
Y )a(σ) = 0 , α(σ) 6= 0

of the (0, 2) GLSM with a (2, 2) locus.

In the case when G is abelian and rγ = 0 for all chiral multiplets, this
reproduces previous results [McOrist, Melnikov, 2007].
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Localizing (0, 2) GLSMs with a (2, 2) locus

Pseudo-chiral ring relations

The formula
〈O(σ)〉A/2

Σg
=
∑
σ̂∈SBE

H(σ̂)g−1 O(σ̂)

makes it manifest that the correlation functions satisfy the
pseudo-chiral ring relations defined above. We have

〈O(σ) f (σ)〉A/2
Σg

= 0

for any f (σ) such that f (σ̂) = 0—that is, for any pseudo-chiral relation.

This can also be seen from the integral representation of the
correlators.
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Localizing (0, 2) GLSMs with a (2, 2) locus

Further consequences of the localization formula

The explicit formula for the Coulomb branch correlators of the
A/2-twisted GLSMs implies a few more results for the corresponding
NLSMs.

I The correlators do not depend on the JI potentials.
I The correlators only depend on the linear term in EI ∼ σφI + · · · .

They do not depend on non-linear E-deformations.

These results were previously conjectured [McOrist, Melnikov, 2008].
They follow from our explicit result simply because we localized on
Φi = 0 for all the chiral multiplets.
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Examples (abelian and non-abelian)

Example: CP1 × CP1 with deformed tangent bundle
Consider a theory with gauge group U(1)2, two neutral chiral multiplets
Σ1,Σ2 and four pairs of chiral and Fermi multiplets:

Φi,Λi , i = 1, 2 Qi = (1, 0) , Φj,Λj , j = 1, 2 Qj = (0, 1) ,

with holomorphic potentials Ji = Jj = 0 and

Ei = σ1(Aφ)i + σ2(Bφ)i , Ej = σ1(Cφ)j + σ2(Dφ)j .

with A,B,C,D arbitrary 2× 2 constant matrices. This realizes a
deformation of the tangent bundle to the holomorphic bundle E
described by the cokernel:

0 −→ O2

(
A B
C D

)
−−−−−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0
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Examples (abelian and non-abelian)

CP1 × CP1, continued.

We have two sets γ = 1, 2:

det M1 = det(Aσ1 + Bσ2) , det M2 = det(Cσ1 + Dσ2) .

The g = 0 Coulomb branch residue formula gives

〈σp1
1 σ

p2
2 〉

A/2
CP1 ==

∑
k1,k2∈Z

qk1
1 qk2

2

∮
JKG

dσ1dσ2
σp1

1 σ
p2
2

(det M1)1+k1(det M2)1+k2

This can be checked against independent mathematical computations
of sheaf cohomology groups. [Anderson, Sharpe, unpublished]

This result also implies the “quantum sheaf cohomology relations”:

det M1 = q1 , det M2 = q2 ,

in the A/2-ring. [McOrist, Melnikov, 2007]
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Examples (abelian and non-abelian)

Example: The deformed Grassmannian

The ‘simplest’ non-abelian GLSM has G = U(Nc) with:
I a chiral multiplet Σ in the adjoint
I and Nf pairs Φi,Λi in the fundamental representation of U(Nc)

We can turn on an FI parameter ξ for U(1) ⊂ U(Nc). At ξ � 0, this
model engineers the NLSM on the Grassmanian Gr(Nc,Nf ).

We consider Ji = 0 and the E-potential:

Ei = Ai
j σφj + Tr(σ) Bi

jφj .

We can set Ai
j = δi

j by a field redefinition.

If 1 < Nc < Nf − 1, the tangent space TGr(Nc,Nf ) admits
N2

f − 1 deformations. [Guo, Lu, Sharpe, 2016]

They are encoded in Bi
j (modulo its trace).
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Examples (abelian and non-abelian)

The deformed Grassmannian, continued.

Thus we have the mass matrix:

Ma = σa A +

(
Nc∑

b=1

σb

)
B , a = 1, · · · ,Nc ,

on the Coulomb branch, and the g = 0 correlators:

〈O(σ)〉A/2
CP1 =

∞∑
k=0

qkZk

Zk =
(−1)(Nc−1)k

Nc!

∑
ka|
∑

a ka=k

Res(0)

∏
a6=b(σa − σb)∏Nc

a=1(det Ma)1+ka
O(σ) dσ1 ∧ · · · ∧ dσNc

The sum is over partitions of k into Nc non-negative integers.

One can easily check that the correlators satisfy the ring relations,
which are the QSC relations in this case. See also [Guo, Lu, Sharpe, 2016]
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Conclusion and outlook

Conclusions

I We studied (0, 2) supersymmetric gauge theories with a (2, 2)
locus. The theories with a classical Rax have a ‘Coulomb branch’,
giving us extra milage.

I We found the (0, 2) generalization of a recent (2, 2) Coulomb
branch formula for A-twisted correlation functions of Coulomb
branch operators.

• It involves an interesting JKG residue operation which deserves
further study. In the simplest cases, it is just an ordinary
Grothendieck residue.

• The formula is very concrete and computationally powerful. It allows
to study non-abelian GLSMs, which were previously out of reach.

I An analogous formula applies to B/2-twisted GLSMs related to the
case considered here by a bundle dualization. [Sharpe, 2006]

I The “equivariant” deformation by masses for flavor symmetries is
also straightforward.
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Conclusion and outlook

What now?

The results we just discussed are only valid in a small corner of the
vast world of (0, 2) gauge theories and observables.

What one would really want to do is:
I Compute pseudo-topological correlators in generic (0, 2) theories

with a pseudo-chiral ring.
I Compute correlators of more general half-BPS operators in (0, 2)

GLSMs—that is, understand the (0, 2) chiral algebra
non-perturbatively.

Some very interesting results have been obtained already in the toric
case, see esp. [McOrist, Melnikov, 2008]. To make further progress, one
might need better methods to compute volumes of (0, 2) vortex moduli
spaces.
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