Localization of $\mathcal{N}=(0,2)$ GLSMs on the 'Coulomb branch'

Cyril Closset
SCGP, SUNY Stony Brook
" $(0,2)$ in Paris" workshop, Institut Henri Poincaré
May 31, 2016

Based on: arXiv:1512.08058 with W. Gu, B. Jia and E. Sharpe

Supersymmetric gauge theories in two dimensions

Two-dimensional supersymmetric gauge theories-a.k.a. GLSM—are an interesting playground for the quantum field theorist.

- They exhibit many of the qualitative behaviors of their higher-dimensional cousins.
- also useful to describe surface operators in 4d
- Supersymmetry allows us to perform exact computations.
- They provide useful UV completions of non-linear σ-models, including conformal ones, and of other interesting 2d SCFTs.
- Consequently, they are useful tools for string theory and enumerative geometry:
- $\mathcal{N}=(2,2)$ susy: type II string theory compactifications.
- $\mathcal{N}=(0,2)$ susy: heterotic compactifications.

GLSM Observables

Consider a GLSM with at least one $U(1)$ factor. We have the complexified FI parameter

$$
\tau=\frac{\theta}{2 \pi}+i \xi
$$

which is classically marginal in $2 \mathrm{~d} . \xi \gg 1$ is a large volume limit.
Schematically, expectation values of appropriately supersymmetric local operators \mathcal{O} have the expansion

$$
\langle\mathcal{O}\rangle \sim \sum_{k} q^{k} Z_{k}(\mathcal{O}), \quad q=e^{2 \pi i \tau} .
$$

The 2d instantons are gauge vortices.

GLSM supersymmetric observables: the $(2,2)$ case

For theories with $\mathcal{N}=(2,2)$ supersymmetry, we can consider the half-BPS operators:

- $\left[\tilde{Q}_{-}, \mathcal{O}\right]=\left[\tilde{Q}_{+}, \mathcal{O}\right]=0 \quad$ (chiral ring)
- $\left[Q_{-}, \mathcal{O}\right]=\left[\tilde{Q}_{+}, \mathcal{O}\right]=0$
(twisted chiral ring)
These operators have non-singular OPE:

$$
\mathcal{O}_{a} \mathcal{O}_{b} \sim C_{a b}{ }^{c} \mathcal{O}_{c}
$$

The corresponding chiral rings are captured by TFTs:

$$
\left\langle\mathcal{O}_{a} \mathcal{O}_{b} \cdots\right\rangle_{\Sigma_{g}}
$$

defined by a topological twist of the 'physical' theory [Witten, 1988]:

- chiral ring $\quad \leftrightarrow \quad B$-twist
- twisted chiral ring $\quad \leftrightarrow \quad A$-twist

GLSM supersymmetric observables: the $(2,2)$ case

If we consider 'ordinary' gauge theories of vector and chiral multiplets:

$$
\mathcal{V}^{(2,2)}=\left(a_{\mu}, \sigma, \tilde{\sigma}, \lambda, \tilde{\lambda}, D\right), \quad \Phi^{(2,2)}=(\phi, \tilde{\phi}, \psi, \tilde{\psi}, F, \tilde{F})
$$

the simplest chiral and twisted chiral ring operators are holomorphic polynomials in ϕ and σ, respectively:

$$
\mathcal{O}^{c c}=P(\phi), \quad \mathcal{O}^{a c}=P(\sigma)
$$

This is far from the full story, but enough for our purpose. We will focus on the twisted chiral operators:

$$
\operatorname{Tr}\left(\sigma^{p}\right), \quad p=0,1,2, \cdots
$$

For theories that flow to a NLSM onto a Kähler manifold X, these operators flow to cohomology classes $H^{p, p}(X)$ in the IR.

GLSM supersymmetric observables: $(2,2)$ case

In particular, for X_{3} a CY threefold, the genus-zero correlators

$$
\left\langle\operatorname{Tr}_{I}(\sigma) \operatorname{Tr}_{J}(\sigma) \operatorname{Tr}_{K}(\sigma)\right\rangle_{\mathbb{C} P^{1}}=Y_{I J K}(q), \quad I, J, K=1, \cdots, h^{1,1}\left(X_{3}\right)
$$

compute the holomorphic Yukawa couplings of the type II compactification on X_{3}, albeit in the algebraic coordinates $q=z$. They can often be computed using mirror symmetry.

For non-abelian GLSMs, we generally have more independent correlators of the form:

$$
\left\langle\operatorname{Tr}\left(\sigma^{p_{1}}\right) \operatorname{Tr}\left(\sigma^{p_{2}}\right) \cdots\right\rangle
$$

They can be computed by localization.

$\mathcal{N}=(0,2)$ observables

A priori, the above would not generalize to $(0,2)$ theories, which only have two right-moving supercharges with

$$
Q_{+}^{2}=0, \quad \tilde{Q}_{+}^{2}=0 \quad\left\{Q_{+}, \tilde{Q}_{+}\right\}=-4 P_{\bar{z}} .
$$

Half-BPS operators are \tilde{Q}_{+}-closed, and generally do not form a ring but a chiral algebra:

$$
\mathcal{O}_{a}(z) \mathcal{O}_{b}(0) \sim \sum_{c} \frac{f_{a b c}}{z_{a}^{s_{a}+s_{b}-s_{c}}} \mathcal{O}_{c}(z)
$$

In some favorable cases with an extra $U(1)_{L}$ symmetry, there exists a subset of the \mathcal{O}_{a}, of spin $s=0$, with trivial OPE. These pseudo-chiral rings are also known as "topological heterotic rings".
[Adams, Distler, Ernebjerg, 2006]

$\mathcal{N}=(0,2)$ localization: new result

In this talk, we will motivate a simple localization formula for some pseudo-chiral ring correlation functions in $(0,2)$ models with a "Coulomb branch"-in particular, GLSMs with a " $(2,2)$ locus".
[CC, Gu, Jia, Sharpe, 2015]

For "Coulomb branch operators" similar to the $(2,2)$ case, we have:

$$
\langle\mathcal{O}(\sigma)\rangle_{\mathbb{C} P^{1}}=\sum_{k} q^{k} \oint_{\mathrm{JKG}} \frac{d \sigma}{2 \pi i} Z_{k}^{1-\mathrm{loop}}(\sigma) \mathcal{O}(\sigma)
$$

for the so-called $A / 2$-twist.

This can be generalized to correlators on Σ_{g} using recent results.
[CC, Kim, 2016]

Outline

$\mathcal{N}=(0,2)$ models and quantum sheaf cohomology

Localizing $(0,2)$ GLSMs with a $(2,2)$ locus

Examples (abelian and non-abelian)

Conclusion and outlook

Outline

$\mathcal{N}=(0,2)$ models and quantum sheaf cohomology

Localizing $(0,2)$ GLSMs with a $(2,2)$ locus

Examples (abelian and non-abelian)

Conclusion and outlook

Outline

$\mathcal{N}=(0,2)$ models and quantum sheaf cohomology

Localizing $(0,2)$ GLSMs with a $(2,2)$ locus

Examples (abelian and non-abelian)

Conclusion and outlook

Outline

$\mathcal{N}=(0,2)$ models and quantum sheaf cohomology

Localizing $(0,2)$ GLSMs with a $(2,2)$ locus

Examples (abelian and non-abelian)

Conclusion and outlook

$\mathcal{N}=(0,2)$ observables: Quantum sheaf cohomology

Consider a NLSM:

$$
\Sigma \longrightarrow E
$$

where E is an holomorphic vector bundle over the Kähler manifold X :

$$
V \rightarrow E \rightarrow X .
$$

The local coordinates on X are in chiral multiplets $\Phi_{i}=\left(\phi_{i}, \psi_{i}\right)$ and the local coordinates on the fiber V are in Fermi multiplets $\Lambda_{I}=\left(\Lambda_{I}, E_{I}\right)$.
The 'simplest' \tilde{Q}_{+}-closed operators are of the form:

$$
\omega=\omega_{i_{1} \cdots i_{q} I_{1} \cdots I_{p}}(\phi, \tilde{\phi}) \tilde{\psi}^{i_{1}} \cdots \tilde{\psi}^{i_{q}} \Lambda^{I_{1}} \cdots \Lambda^{I_{p}}, \quad \bar{\partial} \omega=0 .
$$

They correspond to sheaf cohomology classes $H^{q}\left(X, \Lambda^{p} E^{*}\right)$.
We would like to "UV complete" this guys in a GLSM description.

Aside: Curved-space rigid supersymmetry

For massive theories, there is only one way to preserve supersymmetry on the sphere, unlike the $(2,2)$ case.

More precisely, assuming that we have a massive $\mathcal{N}=(0,2)$ theory (such as the GLSM) preserving $U(1)_{R}$, the theory has an \mathcal{R}-multiplet $\mathcal{R}_{\mu}=\left(j_{\mu}^{(R)}, S_{\mu}, T_{\mu \nu}\right)$ [Dumitrescu, Seiberg, 2011] which couples to the metric and its superpartners in the usual way:

$$
\mathscr{L}=\frac{1}{2} \Delta g_{\mu \nu} T^{\mu \nu}+A_{\mu}^{(R)} j_{(R)}^{\mu}+\Psi_{\mu} S^{\mu} .
$$

It is easy to show that the only supersymmetric background à la [Festuccia, Seiberg, 2011] on Σ_{g} is the half-topological twist. [Witten, 1994] (In particular, there exists no $(0,2) \Omega$-background.)
This entails a choice of R-symmetry. Different choices can lead to 'twisted theories' with different properties.

$(0,2)$ GLSM with a $(2,2)$ locus and $A / 2$-twist

We will focus on $(0,2)$ supersymmetric GLSMs with a $(2,2)$ locus. Schematically, they are determined by the following $(0,2)$ matter content:

- A vector multiplet \mathcal{V} and a chiral Σ in the adjoint of the gauge group G, with $\mathfrak{g}=\operatorname{Lie}(G)$.
- Pairs of chiral and Fermi multiplets Φ_{i} and Λ_{i}, in representations \mathfrak{R}_{i} of \mathfrak{g}.
The interactions are encoded in two sets of holomorphic functions of the chiral multiplets \mathcal{E}_{i} and J_{i}.

We also turn on an FI term τ^{I} for each $U(1)_{I}$ in G.

$(0,2)$ GLSM with a $(2,2)$ locus and $A / 2$-twist

We assign the R-charges:

$$
R_{A / 2}[\Sigma]=0, \quad R_{A / 2}\left[\Phi_{i}\right]=r_{i}, \quad R_{A / 2}\left[\Lambda_{i}\right]=r_{i}-1
$$

which is always anomaly-free.

We can define the theory on a curved two-manifold Σ_{g} by an half-twist:

$$
S=S_{0}+\frac{1}{2} R_{A / 2}
$$

preserving one supercharge $\tilde{\mathcal{Q}} \sim \tilde{Q}_{+}$.
The R-charges r_{i} must be integers (typically, $r_{i}=0$ or 2).

$(0,2)$ GLSM with a $(2,2)$ locus and $A / 2$-twist

As a further assumption, we preserve a certain additional flavor $U(1)_{L}$ symmetry classically.
It is convenient to write it as $L=R_{\mathrm{ax}}-R_{A / 2}$ with R_{ax} the 'axial' R-symmetry:

$$
R_{\mathrm{ax}}[\sigma]=2, \quad R_{\mathrm{ax}}\left[\phi_{i}\right]=0, \quad R_{\mathrm{ax}}\left[\Lambda_{i}\right]=1 .
$$

This is generally anomalous except for theories that flow to CFTs. In any case, it constrains us to choose a potential \mathcal{E}_{i} linear in Σ and a potential J_{i} independent of Σ :

$$
\mathcal{E}_{i}(\Sigma, \Phi)=\Sigma E_{i}(\Phi), \quad J_{i}=J_{i}(\Phi)
$$

The Coulomb branch of theories with a $(2,2)$ locus

It is very useful to study the classical "Coulomb branch" spanned by the scalar σ in Σ :

$$
\sigma=\operatorname{diag}\left(\sigma_{a}\right), \quad a=1, \cdots, \operatorname{rank}(\mathfrak{g})
$$

The matter fields obtain a mass

$$
M_{i j}=\left.\partial_{j} \mathcal{E}_{i}\right|_{\phi=0}=\left.\sigma_{a} \partial_{j} E_{i}^{a}\right|_{\phi=0}
$$

By gauge invariance, $M_{i j}$ is block-diagonal, with each block spanned by fields with the same gauge charges. We denote these blocks by M_{γ}.
Note: On the $(2,2)$ locus, $M_{i j}=\delta_{i j} Q_{i}(\sigma)$.
Let us denote by $\tilde{\mathfrak{M}} \cong \mathfrak{h}_{\mathbb{C}} \cong \mathbb{C}^{\operatorname{rank}(G)}$ the covering space of the classical Coulomb branch, spanned by $\left\{\sigma_{a}\right\}$.

The Coulomb branch and $J_{\text {eff }}$

Since the matter fields are massive, we can integrate them out to obtain an effective theory on the "Coulomb branch".
Recall that the field strength $f_{\mu \nu}$ and the gaugini sit in a Fermi multiplet \mathcal{Y} with the associated holomorphic potentials:

$$
\mathcal{E}_{\mathcal{Y}}=0, \quad J_{\mathcal{Y}}=\tau
$$

If we integrate out the matter fields at a generic point on the Coulomb branch, we obtain the effective couplings:

$$
\left(J_{\mathcal{Y}}^{\mathrm{eff}}\right)_{a}=\tau^{a}-\frac{1}{2 \pi i} \sum_{\gamma} \sum_{\rho_{\gamma} \in \Re_{\gamma}} \rho_{\gamma}^{a} \log \left(\operatorname{det} M_{\left(\gamma, \rho_{\gamma}\right)}\right)-\frac{1}{2} \sum_{\alpha>0} \alpha^{a}
$$

[McOrist, Melnikov, 2007]
This also encodes the RG running of τ.

Pseudo-chiral ring relations from $J_{\text {eff }}$

In analogy with the discussion of the twisted chiral ring of $\mathcal{N}=(2,2)$ theories, let us call the equations:

$$
\left(J_{\mathcal{Y}}^{\text {eff }}\right)_{a}(\sigma)=0, \quad \alpha(\sigma) \neq 0
$$

the "Bethe equations" of the $(0,2)$ GLSM defined above. Note that we impose that any solution $\hat{\sigma}=\left\{\hat{\sigma}_{a}\right\}$ should be away from the walls of the Weyl chambers in $\tilde{\mathfrak{M}}$.

We expect that the ‘Coulomb branch’ operators $\operatorname{Tr}\left(\sigma^{P}\right)$ form a pseudo-chiral ring. Their algebra is encoded in $J_{\text {eff }}$ according to:

$$
\mathcal{A}=\mathbb{C}\left[\sigma_{a}\right]^{W_{G}} / I_{\mathrm{BE}}
$$

where I_{BE} is the ideal generated by the relations satisfied by the solutions to the Bethe equations. (We will show this in a moment.)

Sheaf cohomology relations from $J_{\text {eff }}$

For GLSMs that flow to a NLSM over X, we have the well-motivated conjecture:

$$
\operatorname{Tr}\left(\sigma^{p}\right) \quad \longrightarrow \quad \omega \in H^{p}\left(X, \Lambda^{p} E^{*}\right)
$$

In the theories we are considering, E is a deformation of the holomorphic tangent bundle $T X$.

Then the ring \mathcal{A} defined above is a sub-ring of the full (conjectured) quantum sheaf cohomology ring.
In simple-enough cases, it is the full QSC. For instance:

- Toric varieties
- Grassmannian manifold, flag manifolds
with E a deformation of $T X$ are "simple enough" in that sense. see e.g. [Donagi, Guffin, Katz, Sharpe, 2011]

Localization on the Coulomb branch

We would like to compute

$$
\langle\mathcal{O}(\sigma)\rangle_{\mathbb{C} P^{1}}^{A / 2}
$$

in a way similar to recent computations of the elliptic genus [Benini, Eager, Hori, Tachikawa, 2013] and of A-twisted correlators on $\mathbb{C} P^{1}$ [CC, Cremonesi, Park, 2015] for GLSMs.

We use:

$$
\langle\mathcal{O}(\sigma)\rangle_{\mathbb{C} P^{1}}^{A / 2}=\left\langle\mathcal{O}(\sigma) e^{-S_{\mathrm{loc}}}\right\rangle_{\mathbb{C} P^{1}}^{A / 2}
$$

with

$$
S_{\mathrm{loc}}=\frac{1}{e^{2}}\left(S_{Y M}+S_{\Sigma}\right)+\frac{1}{g^{2}} \sum_{i}\left(S_{\Phi_{i}}+S_{\Lambda_{i}}\right)=\tilde{\mathcal{Q}}(\cdots)
$$

and take the $e, g \rightarrow 0$ limit.

Localization on the Coulomb branch

The path integral localizes onto the 'zero-modes' of the vector multiplet on $\mathbb{C} P^{1}$:

$$
\mathcal{V}_{0}=(\tilde{\lambda}, \hat{D}), \quad \Sigma_{0}=\left(\sigma, \tilde{\sigma}, \tilde{\psi}_{\sigma}\right)
$$

They are constant modes on the sphere with the $A / 2$-twist. (In particular, $\tilde{\lambda}$ and $\tilde{\psi}_{\sigma}$ have twisted spin $s=0$.)
We can go onto the classical Coulomb branch:

$$
\sigma=\operatorname{diag}\left(\sigma_{a}\right), \quad a=1, \cdots, \operatorname{rank}(G)
$$

Diagonalizing the full vector multiplet leads to a sum over GNO-quantized fluxes:

$$
\frac{1}{2 \pi} \int_{\mathbb{C} P^{1}} d a=k \in \Gamma_{G^{\vee}}
$$

Localization on the Coulomb branch

The matter fields are massive at generic values of the 'background' $\mathcal{V}_{0}, \Sigma_{0}$, and we can integrate them out:

$$
\langle\mathcal{O}(\sigma)\rangle_{\mathbb{C} P^{1}}^{A / 2}=\sum_{k} q^{k} \int\left[d \mathcal{V}_{0} d \Sigma_{0}\right] \mathcal{Z}_{k}\left(\mathcal{V}_{0}, \Sigma_{0}\right) \mathcal{O}(\sigma)
$$

Here $\mathcal{Z}_{k}\left(\mathcal{V}_{0}, \Sigma_{0}\right)$ is a superdeterminant which one can compute in various ways.
The integration over fermionic zero modes $\tilde{\lambda}, \tilde{\psi}_{\sigma}$ has to be done carefully, but fortunately we can follow previous literature.
Supersymmetry is of great help:

$$
\delta \mathcal{Z}_{k}=\left(\hat{D} \partial_{\tilde{\lambda}}+\tilde{\psi}_{\sigma} \partial_{\tilde{\sigma}}\right) \mathcal{Z}_{k}=0
$$

This helps convert the integral over the classical Coulomb branch into a contour integral.

A residue formula for $A / 2$-model correlators on S^{2}

In this way, one can argue that our $A / 2$-twisted correlators on S^{2} are given by:

$$
\langle\mathcal{O}(\sigma)\rangle_{\mathbb{C} P^{\mathrm{l}}}^{A / 2}=\frac{1}{\left|W_{G}\right|} \sum_{k} \oint_{\mathrm{JKG}} \prod_{a=1}^{\operatorname{rank}(G)}\left[d \sigma_{a} q_{a}^{k_{a}}\right] Z_{k}^{1-1 \mathrm{oop}}(\sigma) \mathcal{O}(\sigma)
$$

with

$$
Z_{k}^{1-\mathrm{loop}}(\sigma)=(-1)^{\sum_{\alpha>0}(\alpha(k)+1)} \prod_{\alpha>0} \alpha(\sigma)^{2} \prod_{\gamma} \prod_{\rho_{\gamma} \in \mathfrak{R}_{\gamma}}\left(\operatorname{det} M_{\left(\gamma, \rho_{\gamma}\right)}\right)^{r_{\gamma}-1-\rho_{\gamma}(k)}
$$

Here we have a new residue prescription generalizing the Jeffrey-Kirwan residue relevant on the $(2,2)$ locus.

The Jeffrey-Kirwan-Grothendieck residue

In the $(2,2)$ case, the Jeffrey-Kirwan residue determines a way to pick a middle-dimensional contour in

$$
\mathbb{C}^{r}-\cup_{i \in I} H_{i}, \quad I=\left\{i_{1}, \cdots, i_{s}\right\}(s \geq r) \quad H_{i}=\left\{\sigma_{a} \mid Q_{i}(\sigma)=0\right\},
$$

when the integrand has poles on H_{i} only. (Here $r=\operatorname{rank}(G)$.)
For generic $(0,2)$ deformations, we have an integrand with singularities on more general divisors of $\tilde{\mathfrak{M}} \cong \mathbb{C}^{r}$:

$$
D_{\gamma}=\left\{\sigma_{a} \mid P_{\gamma}(\sigma)=0\right\},
$$

which intersect at the origin only.
We introduced the notation

$$
P_{\gamma}(\sigma)=\operatorname{det} M_{\gamma} \in \mathbb{C}\left[\sigma_{1}, \cdots, \sigma_{r}\right], \quad(r=\operatorname{rank}(G))
$$

which is a homogeneous polynomial of degree $n_{\gamma} \geq 1$ in σ.

The Jeffrey-Kirwan-Grothendieck residue

To define the relevant Jeffrey-Kirwan-Grothendieck (JKG) residue, we introduce the data $\mathbf{P}=\left\{P_{\gamma}\right\}$ and $\mathbf{Q}=\left\{Q_{\gamma}\right\}$ of divisors D_{γ} and associated gauge charges Q_{γ}. The residue is defined by its action on the holomorphic forms:

$$
\omega_{S}=d \sigma_{1} \wedge \cdots \wedge d \sigma_{r} P_{0} \prod_{b \in S} \frac{1}{P_{b}}
$$

with $S=\left\{\gamma_{1}, \cdots, \gamma_{r}\right\}$, which is

$$
J K G-R e s[\eta] \omega_{S}= \begin{cases}\operatorname{sign}\left(\operatorname{det}\left(Q_{S}\right)\right) \operatorname{Res}_{(0)} \omega_{S} & \text { if } \eta \in \operatorname{Cone}\left(Q_{S}\right), \\ 0 & \text { if } \eta \notin \operatorname{Cone}\left(Q_{S}\right)\end{cases}
$$

with $\operatorname{Res}_{(0)}$ the (local) Grothendieck residue at the origin.

The Jeffrey-Kirwan-Grothendieck residue

The Grothendieck residue itself is defined as:

$$
\operatorname{Res}_{(0)} \omega_{S}=\frac{1}{(2 \pi i)^{r}} \oint_{\Gamma_{\varepsilon}} d \sigma_{1} \wedge \cdots \wedge d \sigma_{r} \frac{P_{0}}{P_{\gamma_{1}} \cdots P_{\gamma_{r}}}
$$

with the real r-dimensional contour:

$$
\Gamma_{\varepsilon}=\left\{\sigma \in \mathbb{C}^{r}| | P_{\gamma_{1}}\left|=\varepsilon_{1}, \cdots,\left|P_{\gamma_{r}}\right|=\varepsilon_{r}\right\}\right.
$$

and it is eminently computable.
Finally, we should take $\eta=\xi_{\text {eff }}^{\mathrm{UV}}$ to cancel the "boundary contributions" from infinity on the Coulomb branch.

We really made two conjectures here: (1) The JKG actually exists as a local residue with nice properties. (2) It is the correct contour integral chosen by the path integral localization. (Full proof for $U(1)$ case only.)

Generalization to Σ_{g}

Following recent work [CC, Kim, 2016; Benini, Zaffaroni, 2016], we can easily generalize the above to a closed orientable Riemann surface Σ_{g} :

$$
\langle\mathcal{O}(\sigma)\rangle_{\Sigma_{g}}^{A / 2}=\frac{1}{|W|} \sum_{k} \oint_{\mathrm{JKG}} \prod_{a=1}^{\operatorname{rank}(G)}\left[d \sigma_{a} q_{a}^{k_{a}}\right] Z_{g, k}^{1-\mathrm{loop}}(\sigma) H(\sigma)^{g} \mathcal{O}(\sigma)
$$

with

$$
\begin{aligned}
Z_{g, k}^{1-\operatorname{loop}}(\sigma) & =(-1)^{\sum_{\alpha>0}(\alpha(k)+1)} \prod_{\alpha>0} \alpha(\sigma)^{2(1-g)} \\
& \times \prod_{\gamma} \prod_{\rho_{\gamma} \in \mathfrak{R}_{\gamma}}\left(\operatorname{det} M_{\left(\gamma, \rho_{\gamma}\right)}\right)^{-(g-1)\left(r_{\gamma}-1\right)-\rho_{\gamma}(k)}
\end{aligned}
$$

and

$$
H(\sigma)=\operatorname{det}_{a b}\left(\partial_{\sigma_{b}} J_{a}^{\mathrm{eff}}\right)
$$

Relation to the Bethe equations

By performing the sum over topological sectors (at least formally), one can rewrite the above result as:

$$
\langle\mathcal{O}(\sigma)\rangle_{\Sigma_{g}}^{A / 2}=\sum_{\hat{\sigma} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}(\hat{\sigma})^{g-1} \mathcal{O}(\hat{\sigma})
$$

with

$$
\mathcal{H}(\sigma)=\left(Z_{0,0}^{1-\text { loop }}(\sigma)\right)^{-1} H(\sigma)
$$

the 'handle-gluing operator'. The sum is over distinct solutions to the 'Bethe equations'

$$
\left(J_{\mathcal{Y}}^{\mathrm{eff}}\right)_{a}(\sigma)=0, \quad \alpha(\sigma) \neq 0
$$

of the $(0,2)$ GLSM with a $(2,2)$ locus.
In the case when G is abelian and $r_{\gamma}=0$ for all chiral multiplets, this reproduces previous results [McOrist, Melnikov, 2007].

Pseudo-chiral ring relations

The formula

$$
\langle\mathcal{O}(\sigma)\rangle_{\Sigma_{g}}^{A / 2}=\sum_{\hat{\sigma} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}(\hat{\sigma})^{g-1} \mathcal{O}(\hat{\sigma})
$$

makes it manifest that the correlation functions satisfy the pseudo-chiral ring relations defined above. We have

$$
\langle\mathcal{O}(\sigma) f(\sigma)\rangle_{\Sigma_{g}}^{A / 2}=0
$$

for any $f(\sigma)$ such that $f(\hat{\sigma})=0$-that is, for any pseudo-chiral relation.

This can also be seen from the integral representation of the correlators.

Further consequences of the localization formula

The explicit formula for the Coulomb branch correlators of the A/2-twisted GLSMs implies a few more results for the corresponding NLSMs.

- The correlators do not depend on the J_{I} potentials.
- The correlators only depend on the linear term in $\mathcal{E}_{I} \sim \sigma \phi_{I}+\cdots$. They do not depend on non-linear E-deformations.

These results were previously conjectured [McOrist, Melnikov, 2008]. They follow from our explicit result simply because we localized on $\Phi_{i}=0$ for all the chiral multiplets.

Example: $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$ with deformed tangent bundle

Consider a theory with gauge group $U(1)^{2}$, two neutral chiral multiplets Σ_{1}, Σ_{2} and four pairs of chiral and Fermi multiplets:

$$
\Phi_{i}, \Lambda_{i}, i=1,2 \quad Q_{i}=(1,0), \quad \Phi_{j}, \Lambda_{j}, j=1,2 \quad Q_{j}=(0,1),
$$

with holomorphic potentials $J_{i}=J_{j}=0$ and

$$
\mathcal{E}_{i}=\sigma_{1}(A \phi)_{i}+\sigma_{2}(B \phi)_{i}, \quad \mathcal{E}_{j}=\sigma_{1}(C \phi)_{j}+\sigma_{2}(D \phi)_{j} .
$$

with A, B, C, D arbitrary 2×2 constant matrices. This realizes a deformation of the tangent bundle to the holomorphic bundle \mathbf{E} described by the cokernel:

$$
0 \longrightarrow \mathcal{O}^{2} \xrightarrow{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)} \mathcal{O}(1,0)^{2} \oplus \mathcal{O}(0,1)^{2} \longrightarrow \mathbf{E} \longrightarrow 0
$$

$\mathbb{C} P^{1} \times \mathbb{C} P^{1}$, continued.
We have two sets $\gamma=1,2$:

$$
\operatorname{det} M_{1}=\operatorname{det}\left(A \sigma_{1}+B \sigma_{2}\right), \quad \operatorname{det} M_{2}=\operatorname{det}\left(C \sigma_{1}+D \sigma_{2}\right) .
$$

The $g=0$ Coulomb branch residue formula gives

$$
\left\langle\sigma_{1}^{p_{1}} \sigma_{2}^{p_{2}}\right\rangle_{\mathbb{C} P^{1}}^{A / 2}==\sum_{k_{1}, k_{2} \in \mathbb{Z}} q_{1}^{k_{1}} q_{2}^{k_{2}} \oint_{\mathrm{JKG}} d \sigma_{1} d \sigma_{2} \frac{\sigma_{1}^{p_{1}} \sigma_{2}^{p_{2}}}{\left(\operatorname{det} M_{1}\right)^{1+k_{1}}\left(\operatorname{det} M_{2}\right)^{1+k_{2}}}
$$

This can be checked against independent mathematical computations of sheaf cohomology groups.
[Anderson, Sharpe, unpublished]
This result also implies the "quantum sheaf cohomology relations":

$$
\operatorname{det} M_{1}=q_{1}, \quad \operatorname{det} M_{2}=q_{2}
$$

in the $A / 2$-ring.
[McOrist, Melnikov, 2007]

Example: The deformed Grassmannian

The 'simplest' non-abelian GLSM has $G=U\left(N_{c}\right)$ with:

- a chiral multiplet Σ in the adjoint
- and N_{f} pairs Φ_{i}, Λ_{i} in the fundamental representation of $U\left(N_{c}\right)$ We can turn on an FI parameter ξ for $U(1) \subset U\left(N_{c}\right)$. At $\xi \gg 0$, this model engineers the NLSM on the Grassmanian $\operatorname{Gr}\left(N_{c}, N_{f}\right)$.

We consider $J_{i}=0$ and the \mathcal{E}-potential:

$$
\mathcal{E}_{i}=A_{i}{ }^{j} \sigma \phi_{j}+\operatorname{Tr}(\sigma) B_{i}{ }^{j} \phi_{j} .
$$

We can set $A_{i}^{j}=\delta_{j}^{i}$ by a field redefinition.
If $1<N_{c}<N_{f}-1$, the tangent space $\operatorname{TGr}\left(N_{c}, N_{f}\right)$ admits
$N_{f}^{2}-1$ deformations.
[Guo, Lu, Sharpe, 2016]
They are encoded in $B_{i}{ }^{j}$ (modulo its trace).

The deformed Grassmannian, continued.
Thus we have the mass matrix:

$$
M_{a}=\sigma_{a} A+\left(\sum_{b=1}^{N_{c}} \sigma_{b}\right) B, \quad a=1, \cdots, N_{c},
$$

on the Coulomb branch, and the $g=0$ correlators:

$$
\begin{gathered}
\langle\mathcal{O}(\sigma)\rangle_{\mathbb{C} P^{\mathrm{l}}}^{A / 2}=\sum_{\mathbf{k}=0}^{\infty} q^{\mathbf{k} \mathcal{Z}_{\mathbf{k}}} \\
\mathcal{Z}_{\mathbf{k}}=\frac{(-1)^{\left(N_{c}-1\right) \mathbf{k}}}{N_{c}!} \sum_{k_{a} \mid \sum_{a} k_{a}=\mathbf{k}} \operatorname{Res}_{(0)} \frac{\prod_{a \neq b}\left(\sigma_{a}-\sigma_{b}\right)}{\prod_{a=1}^{N_{c}}\left(\operatorname{det} M_{a}\right)^{1+k_{a}}} \mathcal{O}(\sigma) d \sigma_{1} \wedge \cdots \wedge d \sigma_{N_{c}}
\end{gathered}
$$

The sum is over partitions of k into N_{c} non-negative integers.
One can easily check that the correlators satisfy the ring relations, which are the QSC relations in this case. See also [Guo, Lu, Sharpe, 2016]

Conclusions

- We studied $(0,2)$ supersymmetric gauge theories with a $(2,2)$ locus. The theories with a classical R_{ax} have a 'Coulomb branch', giving us extra milage.
- We found the $(0,2)$ generalization of a recent $(2,2)$ Coulomb branch formula for A-twisted correlation functions of Coulomb branch operators.
- It involves an interesting JKG residue operation which deserves further study. In the simplest cases, it is just an ordinary Grothendieck residue.
- The formula is very concrete and computationally powerful. It allows to study non-abelian GLSMs, which were previously out of reach.
- An analogous formula applies to $B / 2$-twisted GLSMs related to the case considered here by a bundle dualization.
[Sharpe, 2006]
- The "equivariant" deformation by masses for flavor symmetries is also straightforward.

What now?

The results we just discussed are only valid in a small corner of the vast world of $(0,2)$ gauge theories and observables.

What one would really want to do is:

- Compute pseudo-topological correlators in generic $(0,2)$ theories with a pseudo-chiral ring.
- Compute correlators of more general half-BPS operators in $(0,2)$ GLSMs-that is, understand the $(0,2)$ chiral algebra non-perturbatively.
Some very interesting results have been obtained already in the toric case, see esp. [McOrist, Melnikov, 2008]. To make further progress, one might need better methods to compute volumes of $(0,2)$ vortex moduli spaces.

