Localization of $\mathcal{N} = (0, 2)$ GLSMs on the 'Coulomb branch'

Cyril Closset

SCGP, SUNY Stony Brook

"(0,2) in Paris" workshop, Institut Henri Poincaré May 31, 2016

Based on: arXiv:1512.08058 with W. Gu, B. Jia and E. Sharpe

Cyril Closset (SCGP)

Supersymmetric gauge theories in two dimensions

Two-dimensional supersymmetric gauge theories—a.k.a. GLSM—are an interesting playground for the quantum field theorist.

- They exhibit many of the qualitative behaviors of their higher-dimensional cousins.
 - also useful to describe surface operators in 4d
- Supersymmetry allows us to perform exact computations.
- They provide useful UV completions of non-linear σ-models, including conformal ones, and of other interesting 2d SCFTs.
- Consequently, they are useful tools for string theory and enumerative geometry:
 - $\mathcal{N} = (2, 2)$ susy: type II string theory compactifications.
 - $\mathcal{N} = (0, 2)$ susy: heterotic compactifications.

GLSM Observables

Consider a GLSM with at least one U(1) factor. We have the complexified FI parameter

$$\tau = \frac{\theta}{2\pi} + i\xi$$

which is classically marginal in 2d. $\xi \gg 1$ is a large volume limit.

Schematically, expectation values of appropriately supersymmetric local operators \mathcal{O} have the expansion

$$\langle {\cal O}
angle \sim \sum_k q^k Z_k({\cal O}) \;, \qquad q = e^{2\pi i au} \;.$$

The 2d instantons are gauge vortices.

GLSM supersymmetric observables: the (2,2) case

For theories with $\mathcal{N} = (2,2)$ supersymmetry, we can consider the half-BPS operators:

$$\begin{split} & [\tilde{Q}_{-},\mathcal{O}] = [\tilde{Q}_{+},\mathcal{O}] = 0 & \text{(chiral ring)} \\ & [Q_{-},\mathcal{O}] = [\tilde{Q}_{+},\mathcal{O}] = 0 & \text{(twisted chiral ring)} \end{split}$$

These operators have non-singular OPE:

 $\mathcal{O}_a \mathcal{O}_b \sim C_{ab}{}^c \mathcal{O}_c$

The corresponding chiral rings are captured by TFTs:

$$\langle \mathcal{O}_a \, \mathcal{O}_b \cdots \rangle_{\Sigma_g}$$

defined by a topological twist of the 'physical' theory [Witten, 1988]:

- chiral ring \leftrightarrow *B*-twist
- twisted chiral ring \leftrightarrow A-twist

GLSM supersymmetric observables: the (2,2) case

If we consider 'ordinary' gauge theories of vector and chiral multiplets:

$$\mathcal{V}^{(2,2)} = (a_{\mu}, \sigma, \tilde{\sigma}, \lambda, \tilde{\lambda}, D) , \qquad \Phi^{(2,2)} = (\phi, \tilde{\phi}, \psi, \tilde{\psi}, F, \tilde{F})$$

the simplest chiral and twisted chiral ring operators are holomorphic polynomials in ϕ and σ , respectively:

$$\mathcal{O}^{cc} = P(\phi) , \qquad \qquad \mathcal{O}^{ac} = P(\sigma)$$

This is far from the full story, but enough for our purpose. We will focus on the twisted chiral operators:

$$\operatorname{Tr}(\sigma^p)$$
, $p = 0, 1, 2, \cdots$

For theories that flow to a NLSM onto a Kähler manifold *X*, these operators flow to cohomology classes $H^{p,p}(X)$ in the IR.

Cyril Closset (SCGP)

GLSM supersymmetric observables: (2,2) case

In particular, for X₃ a CY threefold, the genus-zero correlators

 $\langle \operatorname{Tr}_{I}(\sigma) \operatorname{Tr}_{J}(\sigma) \operatorname{Tr}_{K}(\sigma) \rangle_{\mathbb{C}P^{1}} = Y_{IJK}(q), \qquad I, J, K = 1, \cdots, h^{1,1}(X_{3})$

compute the holomorphic Yukawa couplings of the type II compactification on X_3 , albeit in the *algebraic coordinates* q = z. They can often be computed using mirror symmetry.

For non-abelian GLSMs, we generally have more independent correlators of the form:

$$\langle \operatorname{Tr}(\sigma^{p_1}) \operatorname{Tr}(\sigma^{p_2}) \cdots \rangle$$

They can be computed by localization.

[Morrison, Plesser, 1994] [Szenes, Vergne, 2003] [CC, Cremonesi, Park, 2015]

$\mathcal{N}=(0,2)$ observables

A priori, the above would not generalize to (0,2) theories, which only have two right-moving supercharges with

 $Q_+^2 = 0$, $\tilde{Q}_+^2 = 0$ $\{Q_+, \tilde{Q}_+\} = -4P_{\bar{z}}$.

Half-BPS operators are \tilde{Q}_+ -closed, and generally do not form a ring but a chiral algebra:

$$\mathcal{O}_a(z)\mathcal{O}_b(0) \sim \sum_c \frac{f_{abc}}{z^{s_a+s_b-s_c}}\mathcal{O}_c(z)$$

In some favorable cases with an extra $U(1)_L$ symmetry, there exists a subset of the \mathcal{O}_a , of spin s = 0, with trivial OPE. These pseudo-chiral rings are also known as "topological heterotic rings".

[Adams, Distler, Ernebjerg, 2006]

$\mathcal{N}=(0,2)$ localization: new result

In this talk, we will motivate a simple localization formula for some pseudo-chiral ring correlation functions in (0, 2) models with a "Coulomb branch"—in particular, GLSMs with a "(2, 2) locus".

[CC, Gu, Jia, Sharpe, 2015]

For "Coulomb branch operators" similar to the (2,2) case, we have:

$$\langle \mathcal{O}(\sigma) \rangle_{\mathbb{C}P^1} = \sum_k q^k \oint_{\mathrm{JKG}} \frac{d\sigma}{2\pi i} Z_k^{1\operatorname{-loop}}(\sigma) \, \mathcal{O}\left(\sigma\right)$$

for the so-called A/2-twist.

This can be generalized to correlators on Σ_g using recent results.

[CC, Kim, 2016]

Cyril Closset (SCGP)

(0, 2) localization

IHP, May 31, 2016 8 / 35

$\mathcal{N}=(0,2)$ models and quantum sheaf cohomology

Localizing (0,2) GLSMs with a (2,2) locus

Examples (abelian and non-abelian)

Conclusion and outlook

$\mathcal{N}=(0,2)$ models and quantum sheaf cohomology

Localizing $\left(0,2\right)$ GLSMs with a $\left(2,2\right)$ locus

Examples (abelian and non-abelian)

Conclusion and outlook

$\mathcal{N}=(0,2)$ models and quantum sheaf cohomology

Localizing $\left(0,2\right)$ GLSMs with a $\left(2,2\right)$ locus

Examples (abelian and non-abelian)

Conclusion and outlook

$\mathcal{N}=(0,2)$ models and quantum sheaf cohomology

Localizing (0,2) GLSMs with a (2,2) locus

Examples (abelian and non-abelian)

Conclusion and outlook

 $\mathcal{N} = (0,2)$ observables: Quantum sheaf cohomology Consider a NLSM:

 $\Sigma \longrightarrow E$

where *E* is an holomorphic vector bundle over the Kähler manifold *X*:

$$V \to E \to X$$
 .

The local coordinates on *X* are in chiral multiplets $\Phi_i = (\phi_i, \psi_i)$ and the local coordinates on the fiber *V* are in Fermi multiplets $\Lambda_I = (\Lambda_I, E_I)$.

The 'simplest' \tilde{Q}_+ -closed operators are of the form:

$$\omega = \omega_{i_1 \cdots i_q I_1 \cdots I_p}(\phi, \tilde{\phi}) \, \tilde{\psi}^{i_1} \cdots \tilde{\psi}^{i_q} \Lambda^{I_1} \cdots \Lambda^{I_p} \,, \qquad \bar{\partial} \omega = 0 \,.$$

They correspond to sheaf cohomology classes $H^q(X, \Lambda^p E^*)$. We would like to "UV complete" this guys in a GLSM description.

Cyril Closset (SCGP)

 $\mathcal{N} = (0,2)$ models and quantum sheaf cohomology

Aside: Curved-space rigid supersymmetry

For massive theories, there is only one way to preserve supersymmetry on the sphere, unlike the (2, 2) case.

More precisely, assuming that we have a massive $\mathcal{N} = (0, 2)$ theory (such as the GLSM) preserving $U(1)_R$, the theory has an \mathcal{R} -multiplet $\mathcal{R}_{\mu} = (j_{\mu}^{(R)}, S_{\mu}, T_{\mu\nu})$ [Dumitrescu, Seiberg, 2011] which couples to the metric and its superpartners in the usual way:

$$\mathscr{L} = rac{1}{2}\Delta g_{\mu
u}T^{\mu
u} + A^{(R)}_{\mu}j^{\mu}_{(R)} + \Psi_{\mu}S^{\mu} \; .$$

It is easy to show that the *only* supersymmetric background à la [Festuccia, Seiberg, 2011] on Σ_g is the half-topological twist. [Witten, 1994] (In particular, there exists no (0, 2) Ω -background.)

This entails a choice of *R*-symmetry. Different choices can lead to 'twisted theories' with different properties.

Cyril Closset (SCGP)

(0,2) GLSM with a (2,2) locus and A/2-twist

We will focus on (0, 2) supersymmetric GLSMs with a (2, 2) locus. Schematically, they are determined by the following (0, 2) matter content:

- A vector multiplet V and a chiral ∑ in the adjoint of the gauge group G, with g = Lie(G).
- ▶ Pairs of chiral and Fermi multiplets Φ_i and Λ_i , in representations \Re_i of \mathfrak{g} .

The interactions are encoded in two sets of holomorphic functions of the chiral multiplets \mathcal{E}_i and J_i .

We also turn on an FI term τ^I for each $U(1)_I$ in G.

(0,2) GLSM with a (2,2) locus and A/2-twist

We assign the *R*-charges:

$$R_{A/2}[\Sigma] = 0$$
, $R_{A/2}[\Phi_i] = r_i$, $R_{A/2}[\Lambda_i] = r_i - 1$,

which is always anomaly-free.

We can define the theory on a curved two-manifold Σ_g by an half-twist:

$$S = S_0 + \frac{1}{2} R_{A/2} ,$$

preserving one supercharge $\tilde{Q} \sim \tilde{Q}_+$. The *R*-charges r_i must be integers (typically, $r_i = 0$ or 2).

Cyril Closset (SCGP)

(0,2) GLSM with a (2,2) locus and A/2-twist

As a further assumption, we preserve a certain additional flavor $U(1)_L$ symmetry classically.

It is convenient to write it as $L = R_{ax} - R_{A/2}$ with R_{ax} the 'axial' *R*-symmetry:

$$R_{\mathrm{ax}}[\sigma] = 2$$
, $R_{\mathrm{ax}}[\phi_i] = 0$, $R_{\mathrm{ax}}[\Lambda_i] = 1$.

This is generally anomalous except for theories that flow to CFTs. In any case, it constrains us to choose a potential \mathcal{E}_i linear in Σ and a potential J_i independent of Σ :

$$\mathcal{E}_i(\Sigma, \Phi) = \Sigma E_i(\Phi) , \qquad J_i = J_i(\Phi)$$

The Coulomb branch of theories with a (2,2) locus

It is very useful to study the classical "Coulomb branch" spanned by the scalar σ in Σ :

 $\sigma = \operatorname{diag}(\sigma_a)$, $a = 1, \cdots, \operatorname{rank}(\mathfrak{g})$

The matter fields obtain a mass

$$M_{ij} = \partial_j \mathcal{E}_i \big|_{\phi=0} = \sigma_a \, \partial_j E_i^a \big|_{\phi=0} \, .$$

By gauge invariance, M_{ij} is block-diagonal, with each block spanned by fields with the same gauge charges. We denote these blocks by M_{γ} .

Note: On the (2,2) locus, $M_{ij} = \delta_{ij}Q_i(\sigma)$.

Let us denote by $\tilde{\mathfrak{M}} \cong \mathfrak{h}_{\mathbb{C}} \cong \mathbb{C}^{\operatorname{rank}(G)}$ the covering space of the classical Coulomb branch, spanned by $\{\sigma_a\}$.

Localizing (0, 2) GLSMs with a (2, 2) locus

The Coulomb branch and $J_{\rm eff}$

Since the matter fields are massive, we can integrate them out to obtain an effective theory on the "Coulomb branch".

Recall that the field strength $f_{\mu\nu}$ and the gaugini sit in a Fermi multiplet \mathcal{Y} with the associated holomorphic potentials:

$$\mathcal{E}_{\mathcal{Y}} = 0 , \qquad \qquad J_{\mathcal{Y}} = \tau ,$$

If we integrate out the matter fields at a generic point on the Coulomb branch, we obtain the effective couplings:

$$(J_{\mathcal{Y}}^{\text{eff}})_{a} = \tau^{a} - \frac{1}{2\pi i} \sum_{\gamma} \sum_{\rho_{\gamma} \in \mathfrak{R}_{\gamma}} \rho_{\gamma}^{a} \log\left(\det M_{(\gamma, \rho_{\gamma})}\right) - \frac{1}{2} \sum_{\alpha > 0} \alpha^{a}$$

[McOrist, Melnikov, 2007]

This also encodes the RG running of τ .

Pseudo-chiral ring relations from $J_{\rm eff}$

In analogy with the discussion of the twisted chiral ring of $\mathcal{N}=(2,2)$ theories, let us call the equations:

 $(J_{\mathcal{Y}}^{\text{eff}})_a(\sigma) = 0 , \qquad \qquad \alpha(\sigma) \neq 0$

the "Bethe equations" of the (0,2) GLSM defined above. Note that we impose that any solution $\hat{\sigma} = \{\hat{\sigma}_a\}$ should be away from the walls of the Weyl chambers in $\tilde{\mathfrak{M}}$.

We expect that the 'Coulomb branch' operators $Tr(\sigma^p)$ form a pseudo-chiral ring. Their algebra is encoded in J_{eff} according to:

 $\mathcal{A} = \mathbb{C}[\sigma_a]^{W_G} / I_{\rm BE}$

where I_{BE} is the ideal generated by the relations satisfied by the solutions to the Bethe equations. (We will show this in a moment.)

Cyril Closset (SCGP)

Sheaf cohomology relations from $J_{\rm eff}$

For GLSMs that flow to a NLSM over *X*, we have the well-motivated *conjecture:*

 $\operatorname{Tr}(\sigma^p) \longrightarrow \omega \in H^p(X, \Lambda^p E^*)$

In the theories we are considering, E is a deformation of the holomorphic tangent bundle TX.

Then the ring A defined above is a sub-ring of the full (conjectured) quantum sheaf cohomology ring.

In simple-enough cases, it *is* the full QSC. For instance:

- Toric varieties
- Grassmannian manifold, flag manifolds

with E a deformation of TX are "simple enough" in that sense.

See e.g. [Donagi, Guffin, Katz, Sharpe, 2011]

Localizing (0, 2) GLSMs with a (2, 2) locus

Localization on the Coulomb branch

We would like to compute

 $\langle \mathcal{O}(\sigma) \rangle^{A/2}_{\mathbb{C}P^1}$

in a way similar to recent computations of the elliptic genus [Benini, Eager, Hori, Tachikawa, 2013] and of A-twisted correlators on $\mathbb{C}P^1$ [CC, Cremonesi, Park, 2015] for GLSMs.

We use:

$$\langle \mathcal{O}(\sigma) \rangle_{\mathbb{C}P^1}^{A/2} = \langle \mathcal{O}(\sigma) \; e^{-S_{\mathrm{loc}}} \rangle_{\mathbb{C}P^1}^{A/2}$$

with

$$S_{ ext{loc}} = rac{1}{e^2}(S_{YM} + S_{\Sigma}) + rac{1}{g^2}\sum_i (S_{\Phi_i} + S_{\Lambda_i}) = ilde{\mathcal{Q}}(\cdots)$$

and take the $e, g \rightarrow 0$ limit.

Localization on the Coulomb branch

The path integral localizes onto the 'zero-modes' of the vector multiplet on $\mathbb{C}P^1$:

$$\mathcal{V}_0 = (\tilde{\lambda}, \hat{D}) \;, \qquad \Sigma_0 = (\sigma, \tilde{\sigma}, \tilde{\psi}_{\sigma})$$

They are constant modes on the sphere with the A/2-twist. (In particular, $\tilde{\lambda}$ and $\tilde{\psi}_{\sigma}$ have twisted spin s = 0.)

We can go onto the classical Coulomb branch:

$$\sigma = \operatorname{diag}(\sigma_a)$$
, $a = 1, \cdots, \operatorname{rank}(G)$

Diagonalizing the full vector multiplet leads to a sum over GNO-quantized fluxes: [Blau, Thompson, 1994]

$$\frac{1}{2\pi}\int_{\mathbb{C}P^1} da = k \in \Gamma_{G^\vee}$$

Localizing (0, 2) GLSMs with a (2, 2) locus

Localization on the Coulomb branch

The matter fields are massive at generic values of the 'background' V_0, Σ_0 , and we can integrate them out:

$$\langle \mathcal{O}(\sigma) \rangle_{\mathbb{C}P^1}^{A/2} = \sum_k q^k \int [d\mathcal{V}_0 \, d\Sigma_0] \, \mathcal{Z}_k(\mathcal{V}_0, \Sigma_0) \, \mathcal{O}(\sigma)$$

Here $\mathcal{Z}_k(\mathcal{V}_0, \Sigma_0)$ is a superdeterminant which one can compute in various ways.

The integration over fermionic zero modes $\tilde{\lambda}, \tilde{\psi}_{\sigma}$ has to be done carefully, but fortunately we can follow previous literature.

Supersymmetry is of great help:

$$\delta \mathcal{Z}_k = \left(\hat{D} \partial_{ ilde{\lambda}} + ilde{\psi}_\sigma \partial_{ ilde{\sigma}}
ight) \mathcal{Z}_k = 0$$

This helps convert the integral over the classical Coulomb branch into a *contour integral*.

Cyril Closset (SCGP)

A residue formula for A/2-model correlators on S^2

In this way, one can argue that our A/2-twisted correlators on S^2 are given by:

$$\left\langle \mathcal{O}(\sigma) \right\rangle_{\mathbb{C}P^{1}}^{A/2} = \frac{1}{|W_{G}|} \sum_{k} \oint_{\text{JKG}} \prod_{a=1}^{\text{rank}(G)} \left[d\sigma_{a} \, q_{a}^{k_{a}} \right] \, Z_{k}^{1-\text{loop}}(\sigma) \, \mathcal{O}\left(\sigma\right)$$

with

$$Z_{k}^{1-\mathsf{loop}}(\sigma) = (-1)^{\sum_{\alpha>0}(\alpha(k)+1)} \prod_{\alpha>0} \alpha(\sigma)^{2} \prod_{\gamma} \prod_{\rho_{\gamma} \in \mathfrak{R}_{\gamma}} \left(\det M_{(\gamma, \rho_{\gamma})}\right)^{r_{\gamma}-1-\rho_{\gamma}(k)}$$

Here we have a new residue prescription generalizing the Jeffrey-Kirwan residue relevant on the (2,2) locus.

Localizing (0, 2) GLSMs with a (2, 2) locus

The Jeffrey-Kirwan-Grothendieck residue In the (2, 2) case, the Jeffrey-Kirwan residue determines a way to pick a middle-dimensional contour in

$$\mathbb{C}^r - \bigcup_{i \in I} H_i, \qquad I = \{i_1, \cdots, i_s\} \ (s \ge r) \qquad H_i = \{\sigma_a \mid Q_i(\sigma) = 0\},\$$

when the integrand has poles on H_i only. (Here $r = \operatorname{rank}(G)$.)

For generic (0,2) deformations, we have an integrand with singularities on more general divisors of $\tilde{\mathfrak{M}} \cong \mathbb{C}^r$:

$$D_{\gamma} = \{\sigma_a \,|\, P_{\gamma}(\sigma) = 0\} \;,$$

which intersect at the origin only.

We introduced the notation

 $P_{\gamma}(\sigma) = \det M_{\gamma} \in \mathbb{C}[\sigma_1, \cdots, \sigma_r], \qquad (r = \operatorname{rank}(G))$

which is a homogeneous polynomial of degree $n_{\gamma} \ge 1$ in σ .

Cyril Closset (SCGP)

The Jeffrey-Kirwan-Grothendieck residue

To define the relevant Jeffrey-Kirwan-Grothendieck (JKG) residue, we introduce the data $\mathbf{P} = \{P_{\gamma}\}$ and $\mathbf{Q} = \{Q_{\gamma}\}$ of divisors D_{γ} and associated gauge charges Q_{γ} . The residue is defined by its action on the holomorphic forms:

$$\omega_S = d\sigma_1 \wedge \cdots \wedge d\sigma_r P_0 \prod_{b \in S} \frac{1}{P_b} ,$$

with $S = \{\gamma_1, \cdots, \gamma_r\}$, which is

$$\mathsf{JKG-Res}[\eta] \ \omega_S = \begin{cases} \operatorname{sign} \left(\det(Q_S) \right) \operatorname{Res}_{(0)} \omega_S & \text{if } \eta \in \mathsf{Cone}(Q_S) \\ 0 & \text{if } \eta \notin \mathsf{Cone}(Q_S) \end{cases}$$

with $\operatorname{Res}_{(0)}$ the (local) Grothendieck residue at the origin.

Localizing (0, 2) GLSMs with a (2, 2) locus

The Jeffrey-Kirwan-Grothendieck residue The Grothendieck residue itself is defined as:

$$\operatorname{Res}_{(0)}\omega_{S} = \frac{1}{(2\pi i)^{r}} \oint_{\Gamma_{\varepsilon}} d\sigma_{1} \wedge \cdots \wedge d\sigma_{r} \frac{P_{0}}{P_{\gamma_{1}} \cdots P_{\gamma_{r}}}$$

with the real *r*-dimensional contour:

$$\Gamma_{\varepsilon} = \left\{ \sigma \in \mathbb{C}^r \, \middle| \, |P_{\gamma_1}| = \varepsilon_1 \, , \, \cdots \, , |P_{\gamma_r}| = \varepsilon_r \, \right\}$$

and it is eminently computable.

Finally, we should take $\eta = \xi_{\text{eff}}^{\text{UV}}$ to cancel the "boundary contributions" from infinity on the Coulomb branch.

We really made two conjectures here: (1) The JKG actually exists as a local residue with nice properties. (2) It is the correct contour integral chosen by the path integral localization. (Full proof for U(1) case only.)

Generalization to Σ_g

Following recent work [CC, Kim, 2016; Benini, Zaffaroni, 2016], we can easily generalize the above to a closed orientable Riemann surface Σ_g :

$$\left\langle \mathcal{O}(\sigma) \right\rangle_{\Sigma_{g}}^{A/2} = \frac{1}{|W|} \sum_{k} \oint_{\mathsf{JKG}} \prod_{a=1}^{\mathsf{rank}(G)} \left[d\sigma_{a} \, q_{a}^{k_{a}} \right] \, Z_{g,k}^{\mathsf{1-loop}}(\sigma) \, H(\sigma)^{g} \, \, \mathcal{O}\left(\sigma\right)$$

with

$$Z_{g,k}^{1\text{-loop}}(\sigma) = (-1)^{\sum_{\alpha>0}(\alpha(k)+1)} \prod_{\alpha>0} \alpha(\sigma)^{2(1-g)}$$

$$\times \prod_{\gamma} \prod_{\rho_{\gamma} \in \mathfrak{R}_{\gamma}} \left(\det M_{(\gamma, \, \rho_{\gamma})} \right)^{-(g-1)(r_{\gamma}-1)-\rho_{\gamma}(k)}$$

and

$$H(\sigma) = \det_{ab} \left(\partial_{\sigma_b} J_a^{\text{eff}} \right)$$

Cyril Closset (SCGP)

Localizing (0, 2) GLSMs with a (2, 2) locus

Relation to the Bethe equations

By performing the sum over topological sectors (at least formally), one can rewrite the above result as:

$$\langle \mathcal{O}(\sigma) \rangle_{\Sigma_g}^{A/2} = \sum_{\hat{\sigma} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}(\hat{\sigma})^{g-1} \mathcal{O}(\hat{\sigma})$$

with

$$\mathcal{H}(\sigma) = \left(Z_{0,0}^{\text{1-loop}}(\sigma) \right)^{-1} H(\sigma)$$

the 'handle-gluing operator'. The sum is over distinct solutions to the 'Bethe equations'

$$(J_{\mathcal{Y}}^{\text{eff}})_a(\sigma) = 0 , \qquad \qquad \alpha(\sigma) \neq 0$$

of the (0,2) GLSM with a (2,2) locus.

In the case when G is abelian and $r_{\gamma} = 0$ for all chiral multiplets, this reproduces previous results [McOrist, Melnikov, 2007].

Cyril Closset (SCGP)

Localizing (0, 2) GLSMs with a (2, 2) locus

Pseudo-chiral ring relations

The formula

$$\langle \mathcal{O}(\sigma) \rangle_{\Sigma_g}^{A/2} = \sum_{\hat{\sigma} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}(\hat{\sigma})^{g-1} \mathcal{O}(\hat{\sigma})$$

makes it manifest that the correlation functions satisfy the pseudo-chiral ring relations defined above. We have

 $\langle \mathcal{O}(\sigma) f(\sigma) \rangle_{\Sigma_g}^{A/2} = 0$

for any $f(\sigma)$ such that $f(\hat{\sigma}) = 0$ —that is, for any pseudo-chiral relation.

This can also be seen from the integral representation of the correlators.

Cyril Closset (SCGP)

Further consequences of the localization formula

The explicit formula for the Coulomb branch correlators of the A/2-twisted GLSMs implies a few more results for the corresponding NLSMs.

- The correlators do not depend on the J_I potentials.
- ► The correlators only depend on the linear term in $\mathcal{E}_I \sim \sigma \phi_I + \cdots$. They do not depend on *non-linear E-deformations*.

These results were previously conjectured [McOrist, Melnikov, 2008]. They follow from our explicit result simply because we localized on $\Phi_i = 0$ for all the chiral multiplets.

Example: $\mathbb{C}P^1 \times \mathbb{C}P^1$ with deformed tangent bundle

Consider a theory with gauge group $U(1)^2$, two neutral chiral multiplets Σ_1, Σ_2 and four pairs of chiral and Fermi multiplets:

 $\Phi_i, \Lambda_i, i = 1, 2$ $Q_i = (1, 0), \qquad \Phi_j, \Lambda_j, j = 1, 2$ $Q_j = (0, 1),$

with holomorphic potentials $J_i = J_j = 0$ and

 $\mathcal{E}_i = \sigma_1(A\phi)_i + \sigma_2(B\phi)_i$, $\mathcal{E}_j = \sigma_1(C\phi)_j + \sigma_2(D\phi)_j$.

with A, B, C, D arbitrary 2×2 constant matrices. This realizes a deformation of the tangent bundle to the holomorphic bundle **E** described by the cokernel:

$$0 \longrightarrow \mathcal{O}^2 \xrightarrow{\begin{pmatrix} A & B \\ C & D \end{pmatrix}} \mathcal{O}(1,0)^2 \oplus \mathcal{O}(0,1)^2 \longrightarrow \mathbf{E} \longrightarrow 0$$

 $\mathbb{C}P^1 \times \mathbb{C}P^1$, continued.

We have two sets $\gamma = 1, 2$:

$$\det M_1 = \det(A\sigma_1 + B\sigma_2), \qquad \det M_2 = \det(C\sigma_1 + D\sigma_2).$$

The g = 0 Coulomb branch residue formula gives

$$\langle \sigma_1^{p_1} \sigma_2^{p_2} \rangle_{\mathbb{C}P^1}^{A/2} == \sum_{k_1, k_2 \in \mathbb{Z}} q_1^{k_1} q_2^{k_2} \oint_{\mathrm{JKG}} d\sigma_1 d\sigma_2 \ \frac{\sigma_1^{p_1} \sigma_2^{p_2}}{(\det M_1)^{1+k_1} (\det M_2)^{1+k_2}}$$

This can be checked against independent mathematical computations of sheaf cohomology groups. [Anderson, Sharpe, unpublished]

This result also implies the "quantum sheaf cohomology relations":

$$\det M_1 = q_1 , \qquad \det M_2 = q_2 ,$$

in the A/2-ring.

[McOrist, Melnikov, 2007]

Cyril Closset (SCGP)

Example: The deformed Grassmannian

The 'simplest' non-abelian GLSM has $G = U(N_c)$ with:

- a chiral multiplet Σ in the adjoint
- and N_f pairs Φ_i , Λ_i in the fundamental representation of $U(N_c)$

We can turn on an FI parameter ξ for $U(1) \subset U(N_c)$. At $\xi \gg 0$, this model engineers the NLSM on the Grassmanian $Gr(N_c, N_f)$.

We consider $J_i = 0$ and the \mathcal{E} -potential:

 $\mathcal{E}_i = A_i^{\ j} \, \sigma \phi_j + \operatorname{Tr}(\sigma) \, B_i^{\ j} \phi_j \, .$

We can set $A_i^j = \delta_i^i$ by a field redefinition.

If $1 < N_c < N_f - 1$, the tangent space $TGr(N_c, N_f)$ admits $N_f^2 - 1$ deformations. [Guo, Lu, Sharpe, 2016] They are encoded in B_i^j (modulo its trace).

Examples (abelian and non-abelian)

The deformed Grassmannian, continued.

Thus we have the mass matrix:

$$M_a = \sigma_a A + \left(\sum_{b=1}^{N_c} \sigma_b\right) B$$
, $a = 1, \cdots$

on the Coulomb branch, and the g = 0 correlators:

$$\langle \mathcal{O}(\sigma) \rangle_{\mathbb{C}P^1}^{A/2} = \sum_{\mathbf{k}=0}^{\infty} q^{\mathbf{k}} \mathcal{Z}_{\mathbf{k}}$$
$$\mathcal{Z}_{\mathbf{k}} = \frac{(-1)^{(N_c-1)\mathbf{k}}}{N_c!} \sum_{k_a \mid \sum_a k_a = \mathbf{k}} \operatorname{Res}_{(0)} \frac{\prod_{a \neq b} (\sigma_a - \sigma_b)}{\prod_{a=1}^{N_c} (\det M_a)^{1+k_a}} \mathcal{O}(\sigma) \, d\sigma_1 \wedge \dots \wedge d\sigma_{N_c}$$

The sum is over partitions of **k** into N_c non-negative integers.

One can easily check that the correlators satisfy the ring relations, which are the QSC relations in this case. See also [Guo, Lu, Sharpe, 2016]

Cyril Closset (SCGP)

(0, 2) localization

 $, N_c$,

Conclusions

- We studied (0, 2) supersymmetric gauge theories with a (2, 2) locus. The theories with a classical R_{ax} have a 'Coulomb branch', giving us extra milage.
- ► We found the (0,2) generalization of a recent (2,2) Coulomb branch formula for *A*-twisted correlation functions of Coulomb branch operators.
 - It involves an interesting JKG residue operation which deserves further study. In the simplest cases, it is just an ordinary Grothendieck residue.
 - The formula is very concrete and computationally powerful. It allows to study non-abelian GLSMs, which were previously out of reach.
- An analogous formula applies to B/2-twisted GLSMs related to the case considered here by a bundle dualization. [Sharpe, 2006]
- The "equivariant" deformation by masses for flavor symmetries is also straightforward.

What now?

The results we just discussed are only valid in a small corner of the vast world of (0,2) gauge theories and observables.

What one would *really* want to do is:

- Compute pseudo-topological correlators in generic (0,2) theories with a pseudo-chiral ring.
- Compute correlators of more general half-BPS operators in (0, 2) GLSMs—that is, understand the (0, 2) chiral algebra non-perturbatively.

Some very interesting results have been obtained already in the toric case, see esp. [McOrist, Melnikov, 2008]. To make further progress, one might need better methods to compute volumes of (0,2) vortex moduli spaces.