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Introduction

Candelas-Horowitz-Strominger-Witten (1985) :

Characterization of N = 1 supersymmetric Heterotic String compactifications
with M10 = M4 × X , with constant dilaton and zero flux H = 0, by means of
Calabi-Yau manifolds.

Thanks to Yau’s Theorem, moduli for CY compactifications is identified
with complex, Kähler, and bundle moduli;
L. Huang: complex and bundle moduli
Updated by Anderson, Gray, Lukas, Ovrut: complex & bundle moduli mix:
holomorphic Lie algebroid

Strominger - Hull (1986) :

Characterization of N = 1 supersymmetric Heterotic String compactifications,
with nonzero flux H 6= 0, with M10 = M4 × X

Moduli for non-Kahler heterotic compactifications?
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Introduction

Recent developments on moduli of non-Kahler heterotic compactifications:

Becker-Tseng ’06, Cyrier-Lapan ’07, Becker-Tseng-Yau ’07 : partial
results on infinitesimal structure

Melnikov-Sharpe ’11 : inf. moduli related with Dolbeault cohomology of
suitable holomorphic extension over X

De la Ossa-Svanes / Anderson-Gray-Sharpe ’14 : inf. moduli related with
H1(Q) for holomorphic double extension

0→ T∗X → Q→ E → 0

0→ End V ⊕ End TX → E → TX → 0

Remark: Assume X is ∂∂ or H0,2(X) = 0
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Strominger - Hull geometry

(X ,Ω) complex 3-manifold: X complex with Ω ∈ Ω3,0
hol (X)

G: semi-simple compact Lie group

Ps → X : principal G-bundle

Unknowns:
hermitian metric g given by ω (where ω = g(J·, ·)),

A connection (gauge field) on Ps , with curvature F (field strength)

∇ unitary connection on (TX , g), with curvature R

Taking into account the equations of motions:

F ∧ ω2 = 0, F 0,2 = 0,

R ∧ ω2 = 0, R0,2 = 0,

d(‖Ω‖ωω2) = 0,

ddcω − α′(tr R ∧ R − tr F ∧ F ) = 0

Remark: as mathematicians, we cut the α′ expansion at first order
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Parameters and symmetries

M compact, oriented, 6d manifold, Ps → M a G-bundle. Consider

P = {(Ω,∇,A, ω) ∈ Ω3(C)× affine connections× conn. on Ps × Ω2

satisfying (1), (2), (3)}

1 Ω ∈ Ω3(C) determines an almost complex structure JΩ

2 ω is JΩ − compatible
3 ∇ is a (ω, JΩ)-unitary connection

There is a natural groupoid of gauge transformations which acts on P,
preserving the solutions

G̃ = {(g, p) ∈ Aut(PGl ×M Ps)× P : g∗(JΩ, ω) = ǧ∗(JΩ, ω)}

where p = (Ω,∇,A, ω) ∈ P, PGl bundle of oriented frames and source/target

s(g, p) = p, t(g, p) = g∗p
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Brute force

Given p a solution to ST:

p = (Ω,∇,A, ω) ∈ P

consider the tangent space:

TpP ⊂ Ω3,0+2,1 ⊕ Ω1(M,End TM)⊕ Ω1(M, ad Ps)⊕ Ω2

Infinitesimal action of the gauge groupoid Lie G̃:

P : Ω0(TM)⊕ Ω0(ad Ps)⊕ Ω0(M,EndΩ,ω TM)→ TpP

P(V , ϕ, ψ) = (dιV 1,0 Ω, ιV R∇ + d∇(∇V ) +∇ψ, ιV FA + dAϕ, LVω),



Strominger system,
Algebroids and

Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors
Courant algebroids

Generalized metrics

Generalized spinors

Moduli
Moduli and AGSOS map

Moduli splitting

Brute force

Given p a solution to ST:

p = (Ω,∇,A, ω) ∈ P

consider the tangent space:

TpP ⊂ Ω3,0+2,1 ⊕ Ω1(M,End TM)⊕ Ω1(M, ad Ps)⊕ Ω2

Infinitesimal action of the gauge groupoid Lie G̃:

P : Ω0(TM)⊕ Ω0(ad Ps)⊕ Ω0(M,EndΩ,ω TM)→ TpP

P(V , ϕ, ψ) = (dιV 1,0 Ω, ιV R∇ + d∇(∇V ) +∇ψ, ιV FA + dAϕ, LVω),



Strominger system,
Algebroids and

Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors
Courant algebroids

Generalized metrics

Generalized spinors

Moduli
Moduli and AGSOS map

Moduli splitting

Brute force

Given p a solution to ST:

p = (Ω,∇,A, ω) ∈ P

consider the tangent space:

TpP ⊂ Ω3,0+2,1 ⊕ Ω1(M,End TM)⊕ Ω1(M, ad Ps)⊕ Ω2

Infinitesimal action of the gauge groupoid Lie G̃:

P : Ω0(TM)⊕ Ω0(ad Ps)⊕ Ω0(M,EndΩ,ω TM)→ TpP

P(V , ϕ, ψ) = (dιV 1,0 Ω, ιV R∇ + d∇(∇V ) +∇ψ, ιV FA + dAϕ, LVω),



Strominger system,
Algebroids and

Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors
Courant algebroids

Generalized metrics

Generalized spinors

Moduli
Moduli and AGSOS map

Moduli splitting

Brute force

Linearisation L of ST induces a complex of differential operators

0→ Lie G̃ P−→ TpP
L−→ Ω4(C)⊕W ⊕ Ω5 ⊕ Ω4

with W = Ω(0,2)+6(X ,End TX ⊕ ad Ps).

(3d arrow L = ⊕5
i=1Li )

L1(Ω̇, ∇̇, ȧ, ω̇) =dΩ̇

L2(Ω̇, ∇̇, ȧ, ω̇) =(∂a0,1 +
i
2

F J̇ , ∂∇̇0,1 +
i
2

RJ̇ )

L3(Ω̇, ∇̇, ȧ, ω̇) =(dAȧ ∧ ω2 + 2F ∧ ω̇ ∧ ω, d∇∇̇ ∧ ω2 + 2R ∧ ω̇ ∧ ω)

L4(Ω̇, ∇̇, ȧ, ω̇) =d
(

2||Ω0||ω0 ω̇ ∧ ω0 + ˙(||Ω||ω)ω2
0

)
L5(Ω̇, ∇̇, ȧ, ω̇) =

1
2

d
(

J0dω̇ − J0(dω)J̇J0 + 4α′ tr(∇̇ ∧ R)− 4α′ tr(ȧ ∧ F )
)
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L2(Ω̇, ∇̇, ȧ, ω̇) =(∂a0,1 +
i
2

F J̇ , ∂∇̇0,1 +
i
2

RJ̇ )
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Space of infinitesimal deformations

Let S∗ be the complex

0 −→ S0 P−→ S1 L−→ S2

Proposition (Garcia-Fernandez, Rubio, T.)
S∗ is an elliptic complex

Definition:
The finite-dimensional space H1(S∗) is called space of infinitesimal
deformations

Many questions:

Link with De la Ossa-Svanes / Anderson-Gray-Sharpe work?

Decomposition in complex, metric and bundle moduli?

Integration of infinitesimal deformations, obstructions?
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Anomaly VS Bianchi

The anomaly equation: local, Green-Schwarz mechanism,

H = dB − α′(CS(∇)− CS(A))

Require flux quantization: the local B’s glue into a closed 3-form flux,
which defines an integral class in H3(M,Z).
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Anomaly VS Bianchi

Recall

L5 =
1
2

d
(

J0dω̇ − J0(dω)J̇J0 + 4α′ tr(∇̇ ∧ R)− 4α′ tr(ȧ ∧ F )
)
.

Define
dF : H1(S∗)→ H3(M,R)

(Ω̇, ∇̇, ȧ, ω̇) 7→
1
2

(
J0dω̇ − J0(dω)J̇J0 + 4α′ tr(∇̇ ∧ R)− 4α′ tr(ȧ ∧ F )

)
.

L5 is the linearization of Bianchi identity,

ddcω − α′(tr R ∧ R − tr F ∧ F ) = 0,

dF is the linearization of anomaly equation. Set

H1(S̃∗) := ker dF ,

whose elements preserve flux quantization
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(Ω̇, ∇̇, ȧ, ω̇) 7→
1
2

(
J0dω̇ − J0(dω)J̇J0 + 4α′ tr(∇̇ ∧ R)− 4α′ tr(ȧ ∧ F )
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ker dF corresponds to a cohomology group of a complex S̃∗ :

S̃0 ⊂ S0 ⊕ Ω2, S̃1 = S1 ⊕ Ω2.

2-forms play a role of symmetries, and play a role as parameters.

Substitute L5 by L̃5 (linearization of anomaly equation)

L̃5(Ω̇, ∇̇, ȧ, ω̇, b) = db −
1
2

(
J0dω̇ − J0(dω)J̇J0 + 4α′ tr(∇̇ ∧ R)− . . .

)
The maps

P̃ : S̃0 → S̃1 and L̃5 : S̃1 → Ω3

given by

P̃(V , ϕ, ψ,B) = (P(V , ϕ, ψ),B) and L̃ = L1 ⊕ . . .⊕ L4 ⊕ L̃5

define a complex iff
L̃5 ◦ P̃ = 0

meaning of this equation?
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Strominger meets generalized geometry

(∗) L̃5 ◦ P̃ = 0

Equation satisfied by symmetries of a Courant algebroid (E , 〈, 〉, [, ], πT )
(Baraglia, Rubio, Hitchin) constructed from a solution of the Strominger system

E = T ⊕ End T ⊕ ad Ps ⊕ T∗.

Infinitesimal symmetries:

Lie Aut E ⊂ Lie G̃ ⊕ Ω2 ⊕ · · ·

and sub-algebra
Lie Ãut E ⊂ Lie Aut E

given by (V , ϕ, ψ,B) satisfying (∗).

S̃0 = Lie Ãut E → S̃1 = S1 ⊕ Ω2 → . . .

Elements of S̃1: infinitesimal variations of generalized metrics V+ ⊂ E
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Exact case (T + T ∗, 〈, 〉, [, ], πT )

Courant algebroid structure on T + T∗:

〈X + ξ,Y + η〉 =
1
2

(iXη + iY ξ), [X + ξ,Y + η] = [X ,Y ] + LXη − iY dξ

It has structure group O(n, n), and symmetries include closed 2-forms, B-fields:
X + ξ 7→ X + ξ + iX B.

Twisted version: an exact Courant algebroid (E , 〈, 〉, [, ], πT ) (+ axioms)

0→ T∗ → E → T → 0.

It is isomorphic, by choosing a (non-canonical) splitting, to

(T + T∗, 〈, 〉, [, ]H := [, ] + iX iY H, πT ),

for some H ∈ Ω3
cl (M) (whose class [H] ∈ H3(M) parameterizes E).
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Transitive case T ∗ → E → T → 0

Given a principal G-bundle P, we obtain by reduction a transitive Courant
algebroid E :

T∗ → E → T → 0.

As a vector bundle,
E ∼= T + ad P + T∗

Choosing a splitting T → E , E is isomorphic to

(T + ad P + T∗, 〈, 〉, [, ]θ,H , πT ),

where θ is a connection on P (with curvature Fθ ∈ Ω2
cl (ad P)),

and H ∈ Ω3(M) such that

dH − 〈Fθ ∧ Fθ〉 = 0.

Remark: This last equation is like the Bianchi identity: for any solution to ST,
setting

P := Ps ×M PGl

build a transitive Courant algebroid using the 3-form H and Fθ = FA + R∇ the
curvature of the product connection θ = A×∇. Choose the pairing so that:

〈Fθ ∧ Fθ〉 = α′(tr R∇ ∧ R∇ − tr FA ∧ FA)
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The bracket

[X + r + ξ,Y + t + η]θ,H =

[X ,Y ] + LXη − iY dξ + iY iX H
− Fθ(X ,Y ) + iX dt − iY dr
+ 2c(tdr) + 2c(iX Fθt)− 2c(iY Fθr).
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Generalized metric for E exact:

A metric is a reduction of the frame bundle from GL(n) to O(n).

A generalized metric is a reduction from O(n, n) to O(n)× O(n).

Equivalent to a rank n positive-definite subbundle

V+ ⊂ E .

Since T∗ is isotropic, π : V+ → T is an isomorphism, so
T inherits a positive-definite pairing, i.e., a usual metric g.

A generalized metric

⇐⇒

a metric g together with an isotropic splitting E ∼= T + T∗.
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Generalized metric for E exact:

A metric is a reduction of the frame bundle from GL(n) to O(n).

A generalized metric is a reduction from O(n, n) to O(n)× O(n).

Equivalent to a rank n positive-definite subbundle

V+ ⊂ E .

Since T∗ is isotropic, π : V+ → T is an isomorphism, so
T inherits a positive-definite pairing, i.e., a usual metric g.

A generalized metric

⇐⇒

a metric g together with an isotropic splitting E ∼= T + T∗.
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generalized metric for E transitive:

For E transitive, the structure group is O(t , s),

A generalized metric is a reduction to O(p, q)× O(t − p, s − q).

Admissible metrics (Garcia-Fernandez):

V+ ⊂ E and V+ ∩ T∗ = {0} and rk(V+) = rk(E)− dim M

admissible generalized metric

⇐⇒

metric g with isotropic splitting E ∼= T + ad P + T∗.
(splittings modelled on Ω1(ad P)⊕ Ω2)

=⇒

metric g, H ∈ Ω3(M), connection θ with curvature Fθ ∈ Ω2
cl (ad P) such that

dH = 〈Fθ ∧ Fθ〉 = α′(tr R ∧ R − tr F ∧ F )



Strominger system,
Algebroids and

Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors
Courant algebroids

Generalized metrics

Generalized spinors

Moduli
Moduli and AGSOS map

Moduli splitting

generalized metric for E transitive:

For E transitive, the structure group is O(t , s),

A generalized metric is a reduction to O(p, q)× O(t − p, s − q).

Admissible metrics (Garcia-Fernandez):

V+ ⊂ E and V+ ∩ T∗ = {0} and rk(V+) = rk(E)− dim M

admissible generalized metric

⇐⇒

metric g with isotropic splitting E ∼= T + ad P + T∗.
(splittings modelled on Ω1(ad P)⊕ Ω2)

=⇒

metric g, H ∈ Ω3(M), connection θ with curvature Fθ ∈ Ω2
cl (ad P) such that

dH = 〈Fθ ∧ Fθ〉 = α′(tr R ∧ R − tr F ∧ F )



Strominger system,
Algebroids and

Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors
Courant algebroids

Generalized metrics

Generalized spinors

Moduli
Moduli and AGSOS map

Moduli splitting

generalized metric for E transitive:

For E transitive, the structure group is O(t , s),

A generalized metric is a reduction to O(p, q)× O(t − p, s − q).

Admissible metrics (Garcia-Fernandez):

V+ ⊂ E and V+ ∩ T∗ = {0} and rk(V+) = rk(E)− dim M

admissible generalized metric

⇐⇒

metric g with isotropic splitting E ∼= T + ad P + T∗.
(splittings modelled on Ω1(ad P)⊕ Ω2)

=⇒

metric g, H ∈ Ω3(M), connection θ with curvature Fθ ∈ Ω2
cl (ad P) such that

dH = 〈Fθ ∧ Fθ〉 = α′(tr R ∧ R − tr F ∧ F )



Strominger system,
Algebroids and

Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors
Courant algebroids

Generalized metrics

Generalized spinors

Moduli
Moduli and AGSOS map

Moduli splitting

Generalized connection

A connnection on E is a differential operator

D : Ω0(E)→ Ω0(T∗ ⊗ E),

satisfying

Leibniz rule Defe′ = π(e)(f )e′ + fDee

Compatible with the metric π(e)〈e′, e′′〉 = 〈Dee′, e′′〉+ 〈e′,Dee′′〉

Generalized curvature and torsion are defined
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The Gualtieri-Bismut connection

Let V+ be an admissible generalized metric.
We have V− := (V+)⊥ ∼= T and V+

∼= E/T∗(∼= T + ad P).

Let C+
∼= (ad P)⊥ ⊂ T + ad P.

Define, by projecting, a map C, C(V+) = V−, C(V−) = C+.

Define

DB
e e′ := [e−, e′+]+ + [e+, e′−]− + [Ce−, e′−]− + [Ce+, e′+]+,

The connection DB preserves V± and has totally skew torsion TDB .

Given a metric V+, there is not a unique torsion-free connection
compatible with V+.
But thanks to DB , we can define a canonical Levi-Citiva connection

DLC = DB − TDB .

Given ϕ ∈ C∞(M), DLC modified canonically to Dϕ, compatible, torsion-free.
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Generalized Killing spinor equations

If M is spin, by V− ∼= T , introduce the spinor bundle S±(V−).

The connection
Dϕ± : V− → V− ⊗ (V±)∗,

extends to a differential operator on spinors

Dϕ± : S+(V−)→ S+(V−)⊗ (V±)∗,

with associated Dirac operator

/Dϕ− : S+(V−)→ S−(V−).

Given a generalized metric V+, as before, and ϕ ∈ C∞(M), the Killing spinor
equations for a spinor η ∈ S+(V−) are given by

Killing spinor equations,
Waldram-Strickland-Constable-Coimbra

Dϕ+η = 0,

/Dϕ−η = 0.
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On a six-dimensinal spin-manifold

Theorem (Garcia-Fernandez, Rubio, T.)
Assume that E is exact. Then (V+, ϕ, η) is a solution to the Killing spinor
equations with η 6= 0 if and only if H = 0, ϕ is constant and g is a metric with
holonomy contained in SU(3).

Theorem (Garcia-Fernandez, Rubio, T.)
Assume that E is transitive. The Strominger system is equivalent to the Killing
spinor equations.
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A couple of ideas from the proofs

Dϕ+η = 0,

/Dϕ−η = 0.

for (V+, ϕ, η)

are equivalent to

Fθ · η = 0

∇−η = 0,

(H − 2dϕ) · η = 0,

dH − 〈Fθ ∧ Fθ〉 = 0,

for ((g,H, θ), ϕ, η), where, by V− ∼= (T , g), η ∈ S+(T ) ∼= S+(V−) (and ∇− is
the Bismut connection with skew-torsion −H).
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A couple of ideas from the proofs

Fθ · η = 0

∇−η = 0,

(H − 2dϕ) · η = 0,

dH − 〈Fθ ∧ Fθ〉 = 0,

∇−η = 0 will give the holonomy SU(3), or the Calabi-Yau structure.

For the converse in Strominger, given (ω,A,∇), one defines θ = A×∇,
H = dcω and ϕ. Note that the Bianchi identity

ddcω − (tr R ∧ R − tr FA ∧ FA) = 0

corresponds to
dH − 〈Fθ ∧ Fθ〉 = 0.
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Infinitesimal generalized Killing spinors

Recall

H1(S∗) = infinitesimal solutions to ST, modulo symmetries

and the map (linearisation of anomaly equation):

dF : H1(S∗)→ H3(M,R)

Consider the Courant algebroid E built from a solution to ST.

The space H1(S̃∗) = ker dF is the space of infinitesimal solutions of the
generalized Killing spinors equations on E modulo symmetries of E

H1(S̃∗) = infinitesimal solutions to ST, compatible with flux quantization,
modulo symmetries of E .
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Infinitesimal generalized Killing spinors

Elements of Ω0(E) induce inner symmetries of E . By restriction, we obtain an
elliptic complex Ŝ∗ such that:

0

��
H2(M,R)

��
H1(Ŝ∗)

��
0 // H1(S̃∗)

��

// H1(S∗)
dF // H3(M,R) // 0

0

H1(Ŝ∗) = infinitesimal solutions to ST, compatible with flux quantization,
modulo inner symmetries.
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The flux map

Using Kuranishi’s technique, can build local moduli spacesMST , M̃ST and
M̂ST

A priori, these moduli are wild. Assuming the moduli are smooth:

The map
dF : H1(S∗)→ H3(M,R)

is the differential of a Flux map F :

F :MST → H3(X ,R)

Flux quantization: restrict to F−1(H3(M,Z))

dF is a closed H3(M,R)-valued 1-form

dF ∈ Ω1(MST ,H
3(M,R)),

and provides a foliation (integrating Ker dF ) on the moduli space
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The flux map

The leaf of the foliation passing through p is the local moduli space

M̃ST = { solution to gen. Killing spinors eq.}/{gen. Diffeos}

M̃ST −→ MST
dF−→ H3(M,R).

Restrict to inner symmetries:
obtain and H2(M,R)-bundle M̂ST over M̃ST

H2(M,R) −→ M̂ST

↓

M̃ST −→ MST
dF−→ H3(M,R).

Conjecture

The moduli M̂ST carries a natural Kähler structure.

Evidence: there is a natural map TpM̂ST → H1(Q) (complex).



Strominger system,
Algebroids and

Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors
Courant algebroids

Generalized metrics

Generalized spinors

Moduli
Moduli and AGSOS map

Moduli splitting

The flux map

The leaf of the foliation passing through p is the local moduli space

M̃ST = { solution to gen. Killing spinors eq.}/{gen. Diffeos}

M̃ST −→ MST
dF−→ H3(M,R).

Restrict to inner symmetries:
obtain and H2(M,R)-bundle M̂ST over M̃ST

H2(M,R) −→ M̂ST

↓

M̃ST −→ MST
dF−→ H3(M,R).

Conjecture

The moduli M̂ST carries a natural Kähler structure.

Evidence: there is a natural map TpM̂ST → H1(Q) (complex).



Strominger system,
Algebroids and

Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors
Courant algebroids

Generalized metrics

Generalized spinors

Moduli
Moduli and AGSOS map

Moduli splitting

The flux map

The leaf of the foliation passing through p is the local moduli space

M̃ST = { solution to gen. Killing spinors eq.}/{gen. Diffeos}

M̃ST −→ MST
dF−→ H3(M,R).

Restrict to inner symmetries:
obtain and H2(M,R)-bundle M̂ST over M̃ST

H2(M,R) −→ M̂ST

↓

M̃ST −→ MST
dF−→ H3(M,R).

Conjecture

The moduli M̂ST carries a natural Kähler structure.

Evidence: there is a natural map TpM̂ST → H1(Q) (complex).



Strominger system,
Algebroids and

Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors
Courant algebroids

Generalized metrics

Generalized spinors

Moduli
Moduli and AGSOS map

Moduli splitting

AGSOS map
De la Ossa-Svanes/Anderson-Gray-Sharpe interpretation: cocycles in the
Dolbeault complex of Q:

0→ T∗X → Q→ E → 0

0→ Ad Ps ⊕ End TX → E → TX → 0

Exact diagram provided X is a ∂∂-manifold or H0,2(X) = 0:

0

��
H2(M,R)

��
H1(Ŝ∗)

��

AGSOS // H1(Q)

0 // H1(S̊∗)

��

// H1(S∗) // H3(M,R) // 0.

0

Fu-Yau example (elliptic fibration over K 3): X is not ∂∂ and h0,2(X) = 1.
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Deformations of pairs

Elliptic complex encoding deformations of pairs of complex structures on M
and Ps ×M PGL:

C0 Pc−→ C1 Lc−→ C2.

There is a map from S∗ to C∗:

Ψ : S∗ → C∗

that induces a map in cohomology:

Ψ : H1(S∗)→ H1(C∗).

Natural questions:

Image of Ψ?

Interpretation of Ker Ψ as a metric moduli?
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Aeppli cohomology

Recall the definition of Aeppli cohomology groups:

Hp,q
A (X) :=

ker ∂∂
Im∂ + Im∂

We can define a map:

Φ : H1(S∗) ∩ ker Ψ → H1,1
A

[(Ω̇, θ̇, ω̇)] 7→ [(ω̇ − LVω)1,1 − 2c(rc ,Fθ)]

for some vector field V and rc ∈ Ω0(ad P).

Injectivity of Φ would provide a splitting of infinitesimal moduli as holomorphic
components and metric components.
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