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Introduction

Candelas-Horowitz-Strominger-Witten (1985) :

Characterization of N = 1 supersymmetric Heterotic String compactifications
with M0 = M4 x X, with constant dilaton and zero flux H = 0, by means of
Calabi-Yau manifolds.

@ Thanks to Yau’s Theorem, moduli for CY compactifications is identified
with complex, Kahler, and bundle moduli;
L. Huang: complex and bundle moduli
Updated by Anderson, Gray, Lukas, Ovrut: complex & bundle moduli mix:
holomorphic Lie algebroid



Strominger system,
Algebroids and
Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing
spinors

Courant algebroids
Generalized metrics

Introduction

Candelas-Horowitz-Strominger-Witten (1985) :

Characterization of N = 1 supersymmetric Heterotic String compactifications
with M0 = M4 x X, with constant dilaton and zero flux H = 0, by means of
Calabi-Yau manifolds.

@ Thanks to Yau’s Theorem, moduli for CY compactifications is identified
with complex, Kahler, and bundle moduli;
L. Huang: complex and bundle moduli
Updated by Anderson, Gray, Lukas, Ovrut: complex & bundle moduli mix:
holomorphic Lie algebroid

Strominger - Hull (1986) :

Characterization of N = 1 supersymmetric Heterotic String compactifications,
with nonzero flux H # 0, with M0 = M4 x X
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Introduction

Candelas-Horowitz-Strominger-Witten (1985) :

Characterization of N = 1 supersymmetric Heterotic String compactifications
with M0 = M4 x X, with constant dilaton and zero flux H = 0, by means of
Calabi-Yau manifolds.

@ Thanks to Yau’s Theorem, moduli for CY compactifications is identified
with complex, Kahler, and bundle moduli;
L. Huang: complex and bundle moduli
Updated by Anderson, Gray, Lukas, Ovrut: complex & bundle moduli mix:
holomorphic Lie algebroid

Strominger - Hull (1986) :

Characterization of N = 1 supersymmetric Heterotic String compactifications,
with nonzero flux H # 0, with M0 = M4 x X

@ Moduli for non-Kahler heterotic compactifications?
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Introduction

Recent developments on moduli of non-Kahler heterotic compactifications:

@ Becker-Tseng '06, Cyrier-Lapan '07, Becker-Tseng-Yau '07 : partial
results on infinitesimal structure
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@ Becker-Tseng '06, Cyrier-Lapan '07, Becker-Tseng-Yau '07 : partial
Stvominger mess results on infinitesimal structure
generalized geometry

@ Melnikov-Sharpe "11 : inf. moduli related with Dolbeault cohomology of
suitable holomorphic extension over X
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Introduction

Recent developments on moduli of non-Kahler heterotic compactifications:
@ Becker-Tseng '06, Cyrier-Lapan '07, Becker-Tseng-Yau 07 : partial
results on infinitesimal structure

@ Melnikov-Sharpe ’11 : inf. moduli related with Dolbeault cohomology of
suitable holomorphic extension over X

@ De la Ossa-Svanes / Anderson-Gray-Sharpe ’14 : inf. moduli related with
H'(Q) for holomorphic double extension

0T X—-QQ—=E—0
0—-ENdVHENdTX - - TX—0
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Introduction

Recent developments on moduli of non-Kahler heterotic compactifications:
@ Becker-Tseng '06, Cyrier-Lapan '07, Becker-Tseng-Yau 07 : partial
results on infinitesimal structure

@ Melnikov-Sharpe ’11 : inf. moduli related with Dolbeault cohomology of
suitable holomorphic extension over X

@ De la Ossa-Svanes / Anderson-Gray-Sharpe ’14 : inf. moduli related with
H'(Q) for holomorphic double extension

0T X—-QQ—=E—0
0—-ENdVHENdTX - - TX—0

Remark: Assume X is 89 or HO2(X) = 0
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Strominger - Hull geometry

@ (X, Q) complex 3-manifold: X complex with Q € Qf,;f;(X)
@ G: semi-simple compact Lie group
@ Ps — X: principal G-bundle

Unknowns:

@ hermitian metric g given by w (where w = g(J-, -)),

@ A connection (gauge field) on Ps, with curvature F (field strength)
@ V unitary connection on (TX, g), with curvature R
Taking into account the equations of motions:
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Strominger - Hull geometry

@ (X, Q) complex 3-manifold: X complex with Q € Qf‘,;f;(X)
@ G: semi-simple compact Lie group
@ Ps — X: principal G-bundle

Unknowns:
@ hermitian metric g given by w (where w = g(J-, -)),
@ A connection (gauge field) on Ps, with curvature F (field strength)
@ V unitary connection on (TX, g), with curvature R

Taking into account the equations of motions: Strominger system

FArw?=0, F*2=0,
RAw?=0, R%2=0,
d([|Qflww?) =0,

dd°w —o/(rRAR—trFAF)=0

Remark: as mathematicians, we cut the o’ expansion at first order
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Introduction
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Anomaly VS Biandh P={(Q,V,Aw) e Q3((C) x affine connections X conn. on Ps x Q2
\nomal ianchi . .
Anomalyyequa(ion Vs Satleylng (1 )7 (2)? (3)}

Bianchi identity

Strominger meets
generalized geometry

@ Q € Q3(C) determines an almost complex structure Jo
Q wis Jg — compatible

@ Visa (w, Jq)-unitary connection
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Parameters and symmetries

M compact, oriented, 6d manifold, Ps — M a G-bundle. Consider

P ={(Q,V,A w) € Q3(C) x affine connections x conn. on Ps x Q2
satisfying (1), (2), (3)}

@ Q € Q3(C) determines an almost complex structure Jo
Q wis Jg — compatible

@ Visa (w, Jq)-unitary connection

There is a natural groupoid of gauge transformations which acts on P,
preserving the solutions

G ={(9,p) € Aut(Pg; xu Ps) x P: g*(Ja,w) = §"(do,w)}
where p = (2, V, A,w) € P, Pg bundle of oriented frames and source/target

s(g,p)=p, tg,p)=g"p
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consider the tangent space:

p=(QV,Aw)eP

TP c Q30421 ¢ Q' (M, End TM) ® Q' (M, ad Ps) @ Q?
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TP c Q30421 ¢ Q' (M, End TM) ® Q' (M, ad Ps) @ Q?

Infinitesimal action of the gauge groupoid Lie G:
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Introduction
Infinitesimal moduli

Anomaly VS Bianchi p=(QV,Aw)eP

Anomaly equation VS

Bianchi identity consider the tangent space:
Strominger meets

generalized geometry

TP c Q30421 ¢ Q' (M, End TM) ® Q' (M, ad Ps) @ Q?
Infinitesimal action of the gauge groupoid Lie G:

P: Q% TM) @ Q°%(ad Ps) @ Q°(M, Endq,,, TM) — TpP
P(V,¢,9) = (diy1.09, tyRy + dY (VV) + Vi, cyFa + dap, Lyw),
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Brute force

Linearisation L of ST induces a complex of differential operators

0= Lie¢ 2 TP L} C) e Wa oS @0t

with W = Q(©:2+8(X, End TX & ad Ps).
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Brute force

Linearisation L of ST induces a complex of differential operators
0-Lied 5 TP -5 aotC)ewe Q8 a0t
with W = Q(0-2+6(X End TX @ ad Ps).
(3d arrow L = @2 ,L;)
L41(Q,V,a,&) =dQ
Lo(9,V, a,&) =(8a>" + éFJ,EV‘“ + éRJ)
L3(Q,V,a8,0) =(dad A w? +2F A Aw, dyV Aw? + 2RA G Aw)
La(2, 7, 8,6) =0 (2110 luoh A wo + (11210 )f)

Ls(2,V, a,&) =%d (Jodw — Jo(dw)™o + 4o’ tr(V A R) — 4o tr(a A F))
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Space of infinitesimal deformations

Let S* be the complex
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S* is an elliptic complex

Generalized spinors

Definition:

The finite-dimensional space H'(S*) is called space of infinitesimal
deformations




Semeeree™  Space of infinitesimal deformations

Moduli
Carl Tipler

Strominger system and Let S* be the compIeX
infinitesimal moduli

Introduction
Infinitesimal moduli 0 N 30 P N 31 *)L 5‘2
Anomaly VS Bianchi
Anomaly equation V'S
Bianchi identity
Strominger meets
generalized geometry

Proposition (Garcia-Fernandez, Rubio, T.)

Generalized Killing
spinors

Gourant algebroids
Generalized metrics

S* is an elliptic complex

Generalized spinors

Modul Definition:

The finite-dimensional space H'(S*) is called space of infinitesimal
deformations

Many questions:
@ Link with De la Ossa-Svanes / Anderson-Gray-Sharpe work?
@ Decomposition in complex, metric and bundle moduli?
@ Integration of infinitesimal deformations, obstructions?
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Anomaly VS Bianchi

@ The anomaly equation: local, Green-Schwarz mechanism,

H = dB — o/(CS(V) — CS(A))
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Anomaly VS Bianchi

@ The anomaly equation: local, Green-Schwarz mechanism,

H = dB — o/(CS(V) — CS(A))

@ Require flux quantization: the local B’s glue into a closed 3-form flux,
which defines an integral class in H3(M, Z).
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Anomaly VS Bianchi

Recall

Ls = %d (Jodw — Jo(dw)™ + 40’ tr(V A R) — 4o tr(a A F)) .
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1 y . .
ls = ~d (Jodw — Jo(dw)o 4 4o’ tr(V A R) — 4o tr(a A F)) .
Anomaly VS Bianchi 2

Qir:‘mhi'u?ﬁm ' Define

S(romln_germeets

dF : H'(8*) = H3(M,R)

(Y, a,0) % (Jodol; — Jo(dw) 1 4’ tr(V A R) — 4o tr(a A F)).
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Introduction
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1 y . .
ls=~d (Jodw — do(dew) ™0 + 4o’ t(V A R) — 4o’ tr(an F))
Anomaly VS Bianchi 2

Anomaly equation VS .

Bianchi identity Define

Strominger meets
generalized geometry

dF : H'(8*) = H3(M,R)

(Y, a,0) % (Joda; — Jo(dw) 1 4’ tr(V A R) — 4o tr(a A F)).

Ls is the linearization of Bianchi identity,

dd®w — o/ (rRAR—trFAF)=0,

dF is the linearization of anomaly equation.
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Anomaly VS Bianchi

Recall

Ls = %d (Jodw — Jo(dw)™ + 40’ tr(V A R) — 4o tr(a A F)) .

Define
dF : H'(8*) = H3(M,R)

T 1 y . .
(@.V,80)~ 5 (Joda; — Jo(dw) 1 4’ tr(V A R) — 4o tr(a A F)).
Ls is the linearization of Bianchi identity,

dd®w — o/ (rRAR—trFAF)=0,

dF is the linearization of anomaly equation. Set

H'(8*) := ker dF,

whose elements preserve flux quantization



Strominger system,
Algebroids and

CaMrIO:il:)l:er ker dF corresponds to a cohomology group of a complex S+

<0 2 a1 _ ol 2
Strominger system and S C So 52 Q ) §'=S D Q°.
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity




Strominger system,
Algebroids and

CaMrIO:il:)l:er ker dF corresponds to a cohomology group of a complex S+

Q0 2 a1 1 2
Strominger system and S c So @ Q5 S =S5 o0
infinitesimal moduli

ireducton 2-forms play a role of symmetries,

Infinitesimal moduli

Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity




Strominger system,

Algebroids and
Moduli ~
o |°Tu: ker d.F corresponds to a cohomology group of a complex S* :
arl Tipler
30 2 1 1 2
Strominger system and S C SO (&) Q 5 S'=8 (&3] Q.
infinitesimal moduli
edueton 2-forms play a role of symmetries, and play a role as parameters.

Infinitesimal moduli

Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity

Strominger meets




Strominger system,
Algebroids and
Moduli

Carl Tipler

Strominger system and
infinitesimal moduli

Introduction
Infinitesimal moduli

Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

ker dF corresponds to a cohomology group of a complex S+
P csan? S =5a0
2-forms play a role of symmetries, and play a role as parameters.

Substitute Ls by Ls (linearization of anomaly equation)

Ls(Q,V, a,0,b) = db — % (Jodw — Jo(dw)™o + 4’ tr(V AR) — ...
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ker dF corresponds to a cohomology group of a complex S+
P csan? S =5a0
2-forms play a role of symmetries, and play a role as parameters.

Substitute Ls by Ls (linearization of anomaly equation)

Ls(Q,V, a,0,b) = db — % (Jodw — Jo(dw)™o + 4’ tr(V AR) — ...

The maps _

P.s% & and L5:§1—>f23
given by
P(V,¢,%,B) = (P(V,,%),B)  and

define a complex iff

[=Lio..olols
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ker dF corresponds to a cohomology group of a complex S+

P csten? S =590

2-forms play a role of symmetries, and play a role as parameters.

Substitute Ls by Ls (linearization of anomaly equation)

Ls(Q,V, a,0,b) = db — % (Jodw — Jo(dw)™o + 4’ tr(V AR) — ...

The maps _

P.s% & and L5:~

given by
P(V,¢,,B) = (P(V, ¢, %), B)

define a complex iff

and

Zso:‘szo

eliols
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ker dF corresponds to a cohomology group of a complex S+
S can? S =5a
2-forms play a role of symmetries, and play a role as parameters.

Substitute Ls by Ls (linearization of anomaly equation)
T (O 26 b) — 1 - I P
Ls(2.V,4,0,b) = db — (Jodw — Jo(dw)? + 40’ tr(V A R) — .. )

The maps B

P.s0 & and L5:§1—>Q3
given by

P(V,0,9,B) = (P(V,0,4),B) and L=L1®...®LdLs

define a complex iff L
LsoP=0

meaning of this equation?
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Equation satisfied by symmetries of a Courant algebroid (E, (,),[,], 71)
ST D (Baraglia, Rubio, Hitchin) constructed from a solution of the Strominger system
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Equation satisfied by symmetries of a Courant algebroid (E, (,),[,], 71)
ST D (Baraglia, Rubio, Hitchin) constructed from a solution of the Strominger system

E=T@®EndT®adPs® T".
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Strominger meets generalized geometry

(%) Z5ol~3:0

Equation satisfied by symmetries of a Courant algebroid (E, (,),[,],71)
(Baraglia, Rubio, Hitchin) constructed from a solution of the Strominger system

E=ToEndT@adPs® T*.
Infinitesimal symmetries:

LieAutE c LieGe ® o ---
and sub-algebra

Lie AutE C Lie Aut E
given by (V, ¢, 1, B) satisfying (x).

3 —LieAWtE - 3" =S @02 - ...
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Strominger meets generalized geometry

(%) Z5ol~3:0

Equation satisfied by symmetries of a Courant algebroid (E, (,),[,],71)
(Baraglia, Rubio, Hitchin) constructed from a solution of the Strominger system

E=ToEndT@adPs® T*.
Infinitesimal symmetries:
LieAutE c LieGa Q? @ ---

and sub-algebra
Lie Aut E C Lie AutE
given by (V, ¢, 1, B) satisfying (x).

3 —LieAWtE - 3" =S @02 - ...

Elements of S': infinitesimal variations of generalized metrics V, C E
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It has structure group O(n, n), and symmetries include closed 2-forms, B-fields
X+E&— X+E+ixB.
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fniesimal modul Courant algebroid structure on T + T*:
Introduction

Infinitesimal moduli

1 ,
worsVSEMSt (X4 €Y 4n)= (-t ivE),  XHEY bl = X, Y]+ Ln— iyl
Anomaly equation VS

Bianchi identity

e It has structure group O(n, n), and symmetries include closed 2-forms, B-fields:
Generalized Kiling X+E&— X+ €&+ ixB.
spinors

Twisted version: an exact Courant algebroid (E, (,),[,], 71) (+ axioms)
0—->T"—=E—T-=0.
It is isomorphic, by choosing a (non-canonical) splitting, to
(T+ 776001 = L1+ ixivH, 7)),

for some H € Q3,(M) (whose class [H] € H3(M) parameterizes E).
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Given a principal G-bundle P, we obtain by reduction a transitive Courant
algebroid E:

Strominger system and
infinitesimal moduli

T*—E—-T-—0.
Introduction
Infinitesimal moduli As a vector bundle, §
~
Anomaly VS Bianchi E=T+adP+ T
Anomaly equation VS

Bianchi identity
Strominger meets
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Transitivecase T* = E —- T — 0

Given a principal G-bundle P, we obtain by reduction a transitive Courant
algebroid E:

T"—>E—T—0.
As a vector bundle,

E~T+4+adP+T"

Choosing a splitting T — E, E is isomorphic to
(T +adP + T*v <7 )7 [7]9,H77TT)7

where 6 is a connection on P (with curvature Fp € Q2 (ad P)),
and H € Q%(M) such that

dH — (Fy A Fy) = 0.
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Transitivecase T* = E —- T — 0

Given a principal G-bundle P, we obtain by reduction a transitive Courant
algebroid E:

T"—-E—-T-—0.

As a vector bundle,
E~T+adP+T*

Choosing a splitting T — E, E is isomorphic to
(T +adP + T*v <7 >7 [7]0,H77TT)7

where 6 is a connection on P (with curvature Fp € Q2 (ad P)),
and H € Q3(M) such that
aH — <F9 A Fg) =0.

Remark: This last equation is like the Bianchi identity: for any solution to ST,
setting

P :=Ps XM PG/

build a transitive Courant algebroid using the 3-form H and Fy = F5 + Ry the
curvature of the product connection = A x V. Choose the pairing so that:

(Fg A F9> = a’(tr Ry ARy —trFa A FA)



Strominger system,
Algebroids and Th e b racket
Moduli
Carl Tipler

Strominger system and
infinitesimal moduli
Introduction
Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS




Strominger system,
Algebroids and
Moduli

Carl Tipler

Strominger system and
infinitesimal moduli

Introduction
Infinitesimal moduli

Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity

Strominger meets
jeneralized geometr

The bracket

(X+r+&Y+t+nlon=
(X, Y]+ Lxn — iyd& + iyixH
— F)(X, Y) + ixdt — iyadr
+ 2¢(tdr) + 2¢(ix Fyt) — 2¢(iy For).
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Generalized metric for E exact:

A metric is a reduction of the frame bundle from GL(n) to O(n).

A generalized metric is a reduction from O(n, n) to O(n) x O(n).
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AAnomally VSrBia:Schi A generalized metric is a reduction from O(n, n) to O(n) x O(n).
nomaly equation

Bianchi identity
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generalized geometry

Equivalent to a rank n positive-definite subbundle

Vi CE.

Since T* is isotropic, 7 : V. — T is an isomorphism, so
T inherits a positive-definite pairing, i.e., a usual metric g.
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Generalized metric for E exact:

A metric is a reduction of the frame bundle from GL(n) to O(n).
A generalized metric is a reduction from O(n, n) to O(n) x O(n).

Equivalent to a rank n positive-definite subbundle
Vi CE.

Since T* is isotropic, = : V. — T is an isomorphism, so
T inherits a positive-definite pairing, i.e., a usual metric g.

A generalized metric
=

a metric g together with an isotropic splitting £ = T + T*.
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Infinitesimal moduli
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S _— Admissible metrics (Garcia-Fernandez):

Bianchi identity

Strominger meets
generalized geometry

Vi, C Eand V, N T* = {0} and rk(V;) = rk(E) — dim M
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generalized metric for E transitive:

For E transitive, the structure group is O(t, s),

A generalized metric is a reduction to O(p, @) x O(t — p, s — Q).
Admissible metrics (Garcia-Fernandez):

Vi, C Eand V, N T* = {0} and rk(V;) = rk(E) — dim M

admissible generalized metric
=

metric g with isotropic splitting E >~ T +adP + T*.
(splittings modelled on Q' (ad P) @ Q?)
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Bianchi identity
Stromi t: .
generaliged geomety Vi C Eand V4 N T* = {0} and rk(Vy) = rk(E) — dim M

Generalized Killing

spinors

Courant algebroids

admissible generalized metric
=

metric g with isotropic splitting E >~ T +adP + T*.
(splittings modelled on Q' (ad P) @ Q?)

—
metric g, H € Q3(M), connection ¢ with curvature Fy € Q2 (ad P) such that

dH = (Fy AFg) =/ (trRAR—trF A F)
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@ Compatible with the metric w(e)(e’, €’) = (De€’,€") + (€', De€’’)
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Strominger meets

generalized geometry

D:Q%E) — Q°E* ® E),
satisfying
@ Leibniz rule Defe’ = w(e)(f)e’ + fDee
@ Compatible with the metric w(e)(e’, €’) = (De€’,€") + (€', De€’’)

Generalized curvature and torsion are defined
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Anomaly equation VS

Blanchi dontry Define, by projecting, amap C, C(V}) = V_, C(V_) = Cy.
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generalized geometry




Strominger system,
Algebroids and
Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi
Anomaly equation VS
Bianchi identity
Strominger meets
generalized geometry

eneralized Killing

The Gualtieri-Bismut connection
Let V. be an admissible generalized metric.
We have V_ := (V4)+ = Tand V, >~ E/T*(= T +adP).

Let C; = (adP)t C T +adP.
Define, by projecting, amap C, C(Vy) = V_, C(V-) = Cy..

Define

DBe' = [e_, €\ ], + [er, €/ ] +[Ce_, e/ ]_ + [Ce., €],

The connection Dg preserves V4. and has totally skew torsion Tp,.



Strominger system,
Algebroids and
Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction
Infinitesimal moduli

Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry

Generalized Killing

spinors

Courant algebroids

The Gualtieri-Bismut connection

Let V. be an admissible generalized metric.
We have V_ := (V4)+ = Tand V, >~ E/T*(= T +adP).

Let Cy =~ (adP)- Cc T +adP.
Define, by projecting, amap C, C(Vy) = V_, C(V-) = Cy..
Define

DBe' :=le_,€\ ] +[e+, e |- +[Ce_,e ] +[Ce:, €]+,
The connection Dg preserves V4 and has totally skew torsion Tp,.
Given a metric V., there is not a unique torsion-free connection
compatible with V...

But thanks to DB, we can define a canonical Levi-Citiva connection

DC = Dg — Tp,.
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The Gualtieri-Bismut connection

Let V. be an admissible generalized metric.
We have V_ := (V4)+ = Tand V, >~ E/T*(= T +adP).

Let Cy =~ (adP)- Cc T +adP.
Define, by projecting, amap C, C(Vy) = V_, C(V-) = Cy..
Define
D8e' = (e, €] +[es,€ ] +[Ce_,e | +[Ce: €],

The connection Dg preserves V4 and has totally skew torsion Tp,.

Given a metric V., there is not a unique torsion-free connection
compatible with V..
But thanks to DB, we can define a canonical Levi-Citiva connection

DC = Dg — Tp,.

Given p € C>°(M), D-C modified canonically to D¥, compatible, torsion-free.
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Strominger system and If M is spin, by V_ =2 T, introduce the spinor bundle Sy (V_).
infinitesimal moduli The connection

Introduction o . .
Infinitesimal modul D:t Vo= Vo (Ve),
Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity

Strominger meets Di : S+( V_ ) — S+( V_ ) ® ( Vj: )*,
generalized geometry

with associated Dirac operator

extends to a differential operator on spinors

B S (Vo) > S_(V_).
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Generalized spinors

Generalized Killing spinor equations

If M is spin, by V_ =2 T, introduce the spinor bundle Sy (V_).
The connection

DY Vo = Vo @ (V)"
extends to a differential operator on spinors
Df : S(Vo) = Sp(Vo) @ (Va)*,
with associated Dirac operator
D% - S (V-) = S_(V-).

Given a generalized metric V., as before, and ¢ € C°°(M), the Killing spinor
equations for a spinor n € Sy (V_) are given by

Killing spinor equations,
Waldram-Strickland-Constable-Coimbra

D_fn =0,
Dp¥n=0.
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On a six-dimensinal spin-manifold

Theorem (Garcia-Fernandez, Rubio, T.)

Assume that E is exact. Then (V4, ¢, n) is a solution to the Killing spinor
equations with » # 0 if and only if H = 0, ¢ is constant and g is a metric with
holonomy contained in SU(3).
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Theorem (Garcia-Fernandez, Rubio, T.)

Strominger meets
generalized geometry

Assume that E is exact. Then (V4, ¢, n) is a solution to the Killing spinor
Sencalizediling equations with  # 0 if and only if H = 0,  is constant and g is a metric with
spinors ] 0
——— holonomy contained in SU(3).

Generalized metrics

Generalized spinors

Theorem (Garcia-Fernandez, Rubio, T.)

Assume that E is transitive. The Strominger system is equivalent to the Killing
spinor equations.
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A couple of ideas from the proofs

D_f?] =0,
p?n=0.
for (V4, ¢, n) are equivalent to
Fo-n=20
vV n=0,

(H—2dy)-n=0,
dH — (Fy A Fg) =0,

for ((g, H,0),p,n), where,by V_ = (T,g),n€ Sp(T) = S (V-)(and V~ is
the Bismut connection with skew-torsion —H).
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(H—2dy)-n=0,
dH — (Fy A Fg) =0,
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dH — (Fy A Fg) =0,

Fo-n=0

V~n = 0 will give the holonomy SU(3), or the Calabi-Yau structure
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Fo-n=0
Anomaly VS Bianchi
Anomaly equation VS \VAn n= 0’
Bianchi identity
Strominger meets H-2 e
generalized geometry ( dgﬂ) n 0’

dH — (Fo A Fg) =0,

V~n = 0 will give the holonomy SU(3), or the Calabi-Yau structure.

For the converse in Strominger, given (w, A, V), one defines § = A x V,
H = d°w and ¢. Note that the Bianchi identity
dd®w — (tIrRAR—trFaANFa) =0
corresponds to
dH — (Fg A F) = 0.
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and the map (linearisation of anomaly equation):

dF : H'(S*) = H3(M,R)
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Infinitesimal generalized Killing spinors

Recall
H'(S*) = infinitesimal solutions to ST, modulo symmetries
and the map (linearisation of anomaly equation):
dF : H'(S*) = H3(M,R)
Consider the Courant algebroid E built from a solution to ST.

The space H' (§*) = ker dF is the space of infinitesimal solutions of the
generalized Killing spinors equations on E modulo symmetries of E
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Infinitesimal generalized Killing spinors

Recall
H'(S*) = infinitesimal solutions to ST, modulo symmetries
and the map (linearisation of anomaly equation):
dF : H'(S*) = H3(M,R)
Consider the Courant algebroid E built from a solution to ST.

The space H' (§*) = ker dF is the space of infinitesimal solutions of the
generalized Killing spinors equations on E modulo symmetries of E

H! (§*) = infinitesimal solutions to ST, compatible with flux quantization,
modulo symmetries of E.
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Elements of Q°(E) induce inner symmetries of E. By restriction, we obtain an
e elliptic complex S* such that:

infinitesimal moduli

Introduction

Infinitesimal moduli O
Anomaly VS Bianchi

Anomaly equation VS

Bianchi identity

Stromil t

R H2(M, R)

H1 ( S* )
1/ Qx 1 * dF 3
0 H!(5*) H'(8*) —Z> H¥3(M,R) —=0




Strominger system,

oo Infinitesimal generalized Killing spinors

Moduli

Gy Elements of Q°(E) induce inner symmetries of E. By restriction, we obtain an
e elliptic complex S* such that:

infinitesimal moduli
Introduction

Infinitesimal moduli 0

Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity

Strominger meets
generalized geometry H 2 (M i R)

Generalized Killing
spinors

H1 (/S\*)
0 H'(3%) H'(8*) — %> H3(M,R) — >0
0

H! (§*) = infinitesimal solutions to ST, compatible with flux quantization,
modulo inner symmetries.
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Using Kuranishi's technique, can build local moduli spaces Mgr, Mgt and
Mesr
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The flux map

Using Kuranishi's technique, can build local moduli spaces Mgr, Mgt and
Mesr

A priori, these moduli are wild. Assuming the moduli are smooth:

The map
dF: H'(S*) —» H3(M,R)
is the differential of a Flux map F:
F: Mgr — H3(X,R)

Flux quantization: restrict to 7~ 1(H3(M, Z))
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The flux map

Using Kuranishi’s technique, can build local moduli spaces Mgr, MST and
Mesr

A priori, these moduli are wild. Assuming the moduli are smooth:

The map
dF : H'(S*) = H}(M,R)
is the differential of a Flux map F:
F: Mgr — H3(X,R)

Flux quantization: restrict to 7~ 1(H3(M, Z))

dFis aclosed H3(M, R)-valued 1-form
dF € Q' (Msr, H3 (M, R)),

and provides a foliation (integrating Ker dF) on the moduli space
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swomingersystemang 1 D€ leaf of the foliation passing through p is the local moduli space
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Introduction
Infinitesimal moduli

Mgr = { solution to gen. Killing spinors eq.}/{gen. Diffeos}

Anomaly VS Bianchi — dF
Anomaly equation VS M ST — M ST
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L H¥(M,R).
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The flux map

The leaf of the foliation passing through p is the local moduli space

Mgy = { solution to gen. Killing spinors eq.}/{gen. Diffeos}
Msr — Mgy LN H3(M, R).
Restrict to inner symmetries:
obtain and H2(M, R)-bundle M7 over Mgy

H2(M,R) — Mgt
+

Msr — Msr 25 H3(M,R).
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The flux map

The leaf of the foliation passing through p is the local moduli space

Mgy = { solution to gen. Killing spinors eq.}/{gen. Diffeos}

Msr — Msr 25 HM,R).

Restrict to inner symmetries:
obtain and H2(M, R)-bundle Mgy over Mgr

H2(M,R) — Mgt

1

Msr — Msr 25 H(M,R).

The moduli /T/Tsr carries a natural Kahler structure.

Evidence: there is a natural map Tpf/l\sr — H'(Q) (complex).
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AGSOS map

De la Ossa-Svanes/Anderson-Gray-Sharpe interpretation: cocycles in the
Dolbeault complex of Q:

0—-T"X—-Q—=€—=0
0—>AdPsENdTX - €& —-TX =0

Exact diagram provided X is a 89-manifold or H-2(X) = 0:

0

H2(M, R)

a A
H ( GSOS

S*) - HY(Q)

0 H(5*)

H'(S*) — H3(M,R) —— 0.




Strominger system,
Algebroids and
Moduli

Carl Tipler

Strominger system and
infinitesimal moduli
Introduction

Infinitesimal moduli

Anomaly VS Bianchi

Anomaly equation VS
Bianchi identity
Strominger meets
generalized geometry

Generalized Killing
nors

AGSOS map

De la Ossa-Svanes/Anderson-Gray-Sharpe interpretation: cocycles in the
Dolbeault complex of Q:

0—-T"X—-Q—=€—=0
0—>AdPsENdTX - €& —-TX =0

Exact diagram provided X is a 99-manifold or H0-2(X) = 0:

0
H2(M, R)

AGSOS

H'(5*) =225 H1(Q)

—~

0 H(5*) H'(8*) — H3(M,R) —> 0.

0
Fu-Yau example (elliptic fibration over K3): X is not 89 and h%2(X) = 1.
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intesimal modl Elliptic complex encoding deformations of pairs of complex structures on M
Infinitesimal moduli and Ps XM PGL:

Anomaly VS Bianchi co Fe, ot Lo, 2.
Anomaly equation VS

Bianchi identity H £3 £

. There is a map from S* to C*:

generalized geometry

V.S~ C*
that induces a map in cohomology:

v H'(S*) = H'(CY).
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Deformations of pairs

Elliptic complex encoding deformations of pairs of complex structures on M
and Ps X Pg.:

c® oot Loy 2,
There is a map from S* to C*:
V.S~ C*
that induces a map in cohomology:

v H'(S*) = H'(CY).

Natural questions:
@ Image of w?
@ Interpretation of Ker W as a metric moduli?
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Aeppli cohomology

Recall the definition of Aeppli cohomology groups:

Hﬁ’q(X) =

ker 89
Imd + Imd
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We can define a map:

o: H(S)Nnkerv — Hy!
[(.0.0)] = [(@=Lyw) = 2¢(r°, Fo)]

for some vector field V and r¢ € Q%(ad P).
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Generalized Killing

Aeppli cohomology

Recall the definition of Aeppli cohomology groups:

ker 90

Hp’qX = —
A Imd + Imd

We can define a map:

o: H(S)Nnkerv — Hy!
[(.0.0)] = [(@=Lyw) = 2¢(r°, Fo)]

for some vector field V and r¢ € Q%(ad P).

Injectivity of & would provide a splitting of infinitesimal moduli as holomorphic
components and metric components.
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