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Mirror Symmetry is Deep Geometry?

e MS is a property of (2,2) SCFTs — but it is trivial in SCFT!

e Mirror Symmetry is a property of Calabi—Yau spaces. Some
CYs are mirror pairs Which??

e Combinatorial duality for CICY in Gorenstein toric varieties

e In string theory, follow mirror pairs through extremal
transitions: (almost) all CY spaces should have a mirror

e Mirror may not be geometrical?
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Mirror Symmetry is Abelian Duality?

Toric models have a UV free description in terms of Abelian
GLSMs

Natural map between toric parameter spaces

Mirror symmetry is a T-duality of Abelian GLSM
Abelian GLSMs are mirror pairs Which??

Some Abelian GLSMs correspond to CY spaces Which??

o Geometry is a side effect in special examples?
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Plan

e Describe the combinatorial data determining a family of
GLSMs

e Find conditions under which the IR limit determines a family
of N =(2,2) SCFTs with integral U(1) charge

e Look for conditions under which the family is generically
nonsingular and check for MS

e Reflexivity, which guarantees a geometric interpretation, is a
sufficient condition Batyrev, Borisov; Batyrev, Nill

e Extremal transitions relate reflexive to non-reflexive models

e Formulate a weaker condition which we conjecture is
sufficient, but not necessary

e Discuss some interesting examples
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A Family of GLSMs

We define a family of NV = (2,2) Abelian GLSMs by:
e A collection of n chiral superfields ¢,

e A gauge group G acting diagonally and effectively via
Q: G — U(1)" inducing q : g — R". For Gc = (C*)" x T we
have r vector superfields V' € g with invariant field strength

D Y
r=21D,DV

e A family of gauge-invariant polynomial superpotentials W (®)

determined by a collection of m invariant monomials
Ms =T, ®a™
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The Lagrangian is
1
_ 4 240 (V) 2 _ 2
L = /d 0 ( Ea e<1 |Pa| 462HZH )

+ (/ dotdo~W(®) + cc. )

n (\é /d0+d§<7, Y) + cc )

Parameters are

e Coefficients bg in W (not renormalized)

o T = % +ip or ¢ = €™ (renormalized at one-loop)
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The Pointset .«

Diagonal action gives a map g : G — (C*)", taking
Hom(—,C*)
Get a presentation of G = Hom(Gc,C*) ~Z" & T

~

0— M- Az G oo, (2)

M~ 79 A€ Matyxn(Z), d = n—r, and (free part of) Q is
the charge matrix

At

Columns of A determine a collection &/ of n points « in
N =M
With Ty = N ®z C* recover familiar

162 () ATy (3)
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The Pointset &

e The map P : Z™ — Z" factors through the kernel of @
defining
B:Z" — M, (4)

with P = A'B

e Columns of B determine a collection & of m points 5 in M

with
W=> bs [l (5)

BeRB a
e This is polynomial iff

% C Cone(Conv &7)". (6)
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The R-symmetry

In general, model becomes strongly coupled at low energy and
IR dynamics is trivial

In A = (2,2) models, a nonanomalous chiral U(1)g symmetry
implies nontrivial IR dynamics

Our superpotential admits an R symmetry under which gauge
invariant chiral operators have integral charge iff

weN: Bv)=1 Ve RB. (7)

2 lies in a primitive hyperplane
The symmetry will be non-anomalous, and twisted sectors
under " will have integral charge, iff

JpeM: (ua)=1 Vaecod (8)

& lies in a primitive hyperplane
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GLSM Data

(ws =) =1

a

Cone(Conv £)
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Mirror Symmetry

o If (u, o) = (AB,v) =1 IR dynamics governed by N = (2,2)
SCFT with ¢ = 3(d — 2s) where d =n—r; s = (u,v).

e Exchanging o/ with % yields a mirror model. Note our
conditions respect the symmetry — with the exception of

% C Cone(Conv <) (9)

e The pointsets are reflexive if
Cone(Conv «7)" = Cone(Conv A). (10)

Reflexive models come in mirror pairs
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Parameter Space

Varying our parameters is a deformation in well-known
conformal manifold

Coefficients b € C™ parameterize chiral deformations
redundantly. Field redefinitions bg +— [], Aa’* produce a
(C*)9 identification

Space of inequivalent models compactifies to toric variety .#g

associated to secondary fan of %.

T € g* are local coordinates on toric variety .# 4 associated to
secondary fan of o/, with homogeneous coordinates a,, and
9 =1, ad® invariant under a, [1s Xgﬂa

Natural mirror map of parameter spaces exchanges a, and bg.
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We study the parameter space .#4 X .#. This is not the
conformal manifold, because

e Our choice for Z might omit some invariant monomials

e In general there are deformations of the SCFT that are not
manifest in the GLSM (non-polynomial deformations)

e In general this is a redundant parameterization, there can be
additional continuous identifications from nonlinear field
redefinitions

e There are points in .#Zg that do not correspond to a SCFT
but to singular limits.

e Same applies to .#Z4.

A good family is one where the generic model is a SCFT. This is
the last condition to be imposed
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Classical Vacua

Classical SUSY vacua are zeroes of scalar potential

U(x,0) = [DI> + > |Ful® + 0T M(¢)o

D:ZQaWaF_PGGJT&

_ow
 06a
M:ZtQaQa|¢o¢‘2 69%2

(11)
Fa

Solutions related by the action of G via Q are identified.
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Classical Vacua

Values of p for which M has a kernel in the space of solutions
to (11) lie in cones and form the faces of a fan in g =R",
the secondary fan of &/

Large cones in this fan are associated to a choice of
triangulation of & which, in turn, determines a fan X

Y gives an irrelevant ideal B in S = CJ[¢] for p in the
associated large cone and we get the toric variety

SpecS — V(B)

-~ (12)
is non-compact and Kz = 0. Need not be Gorenstein

Space of vacua is then Crit(W) C Zs

In general there are massless chiral fields interacting via a
superpotential - bad hybrid

The classical description is valid for p deep in the interior of a
large cone (phase limit)

Zs =
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A Familiar Example - P{ 1 ,,,[8]

</ has 7 points, d = 5. Five points are vertices of a simplex, one
point is in the interior of this, and one along an edge.

There are four phases (triangulations). Using all 7 points, Zy is a
line bundle over resolved P} ; 5,

2 has 105 points (degree-8 monomials) lying in a simplex

In mirror model % has 7 points, superpotential has 7 terms in 105

variables. In LG phase, in which we use only vertices of o

W = bixy + byx3 + b3x§ + bax§ + bsx€ + bexixe + brxixaxzxaxs.
(13)
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Singularities

If Crit W has a noncompact component extending to infinity,
semiclassical considerations are valid for these vacua and show
a continuum of states extending to zero energy, leading to
singular low-energy behavior

Values of p in faces of the secondary fan lead to solutions for
¢ for which M(¢) has a kernel. A continuous subgroup of G
is unbroken and associated o is free, introducing a
noncompact component to space of vacua extending to
infinity and leading to singular IR dynamics

There are quantum corrections to this but large-field behavior
is very well controlled

Topological models, where semiclassical limit is exact, show
there are no additional singularities, so

Model is nonsingular if space of (semi-) classical vacua is
compact.
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Geometry?

In some phase, Crit W may be a CY variety and SCFT is
low-energy limit of NLSM on this for some parameters.

When does a family include a CY phase?

In the reflexive case, if &7 contains an s — 1-simplex such that
each facet of Conv .2/ contains s — 1 of its vertices — a special
simplex) — and the same for #, then there is a phase in which
Zs is a Gorenstein CY and Crit W is a complete intersection
of s hypersurfaces and CY. Exchanging &/ and % get a mirror
pair of these Batyrev Borisov; Batyrev, Nill

There are models for which <7 admits a special simplex but %
does not; in this case we have only one geometrical
interpretation (Z orbifold; Aspinwall, Greene)

Can force a geometry by adding v € N to «7. For s > 1 this
leads to a non-CY space
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Generic Orbits

Assume q, sufficiently generic that all o massive, then space
of vacua given by expectation values of ¢ lying in Xy C Z,

In fact, singular values of b independent of g so need not
choose a phase

R-symmetry means A\¥ : C* — Ty given by v € N preserves
Xs

Orbit of a point with ¢, all nonzero is noncompact, so if X
contains such a point model is singular

These are determined by a polynomial A4 Gelfand, Kapranov.
Zelevinsky

GKZ show that this occurs for b in the (C*)? orbits of points
satisfying

> (B,a)bg=0 Vaco, (14)
BeR
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Other Orbits

Other singularities can be associated to orbits along which
some ¢, vanish

These must span a cone 7 in &7 and if this is not a face the
resulting toric subvariety Zy., is compact

T face of Conv.e/ and T+ C Mg then W restricted to Zs.v
contains monomials from Z N T+

Thus consider faces of Conv & in boundary of
Cone(Conv «7)V. For such a face noncompact orbits will
occur at vanishing of Agnr
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The GKZ Determinant

GKZ study the %-determinant Eg4 which determines
simultaneous vanishing of ¢,0, W ()
This is given by
r
Es =[] a% (15)
-

Product over faces proceeds from dimension zero upwards:

1. All vertices are included.
2. Higher dimensional faces are included only when they add
points obeying nontrivial affine relations.

u(l) positive integers, return to these
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Good Families for &£

If o7 and A are reflexive faces of Conv % dual to faces of
Conv & so the product is over simultaneous vanishing of
subsets of ¢,

GKZ show: the variety determined by simultaneous vanishing
of ¢o0,W is codimension one and corresponds to the
determinant function Eg. This determinant is generically
nonzero.

Can further show if all orbits are compact Xy is compact

If of, % reflexive we find nonsingular models for generic b



Discriminant Loci

®0000

Twisted Superpotential

e Classically, free o fields lead to singularity for p in faces of
cones of secondary fan

e This prediction is subject to quantum corrections, governed by
a twisted superpotential holomorphic in g, Witten; Morrison,
MRP

o At large, generic values for o chiral fields massive and
integrating them out at one-loop leads to

27“[ Z T, [Iog G — Z Q2 log <Z Q”zb>

(16)




Discriminant Loci

0Oe000

Coulomb Branch

e Critical points of W are
Q3
— H (Z Qbab> (17)

e Solutions give noncompact component extendmg to infinity
along codimension one locus in g, =[], aa

e This occurs in (C*)? orbits containing a solution to

a, = Z Qbap (18)
b

or equivalently

> (Ba)an =0 VBeB (19)

acd
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Mixed Branches

e For a subgroup é;, C G let @C = @/@h

e Define

JthI{OéGtQ{ZWthaIO}

(20)
Ao = o — .

partitioning < into charged and neutral fields under
gc = Hom(G, C)

e Give o a large value in g, then 27, are massive and integrating
leads to a product of twisted LG for ¢ € g. and a reduced
GLSM given by <7, and Gj, and suitably restricted
superpotential
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Mixed Branches

e Find flat noncompact o directions in twisted LG model when

Q2 o
11 (z o) 1)

aCd

e Reduced GLSM flows to a Coulomb branch, merging with a
larger component unless secondary fan for @7, C N, is
complete, or

1. No point in @, C Ny, should lie at the origin. <7 spans the
subspace N.g C Ng and so we require <7, N N. g = (). That
is, o, = NC,R N .

2. The subspace N.r must meet Conv .2/ along a face.
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The @7-Determinant and Mirror Symmetry?

e We almost reproduce the GKZ «7-determinant, up to u
factors, except for vertices of Conv .o/

e These represent points in compactification of .#4, possibly
associated to decompactification of a component of Zy

o If Crit W meets these loci we can find singular behavior in the
limit
e In /g these points generally nonsingular

e We have enough to conclude: If &7 and A are reflexive then
the generic element of the family is nonsingular

e Obviously this condition is mirror symmetric
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Extremal Transitions

Extremal transitions will in general connect reflexive to
non-reflexive models

Dropping o € &7 sets a, = 0 picking out a class of
triangulations of &/

In general this will typically generate an “exoflop” phase with
a growing component sticking out of a singularity in CY
component Aspinwall, Greene; Addington,Aspinwall

Smooth the CY dropping the extra component by a
deformation (adding new points to %)

Check that there are no remaining singularities to blow up by
adding points to &7

In general this takes reflexive model to non-reflexive
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A Sufficient Condition?
Definition
The pointsets (<7, ) are B-complete if

Conv(Cone(Conv &)Y N M N H,) = Conv(A), (22)

and similarly @7-complete if

Conv(Cone(Conv #)¥ N NN H,) = Conv(&), (23)

e We Conjecture: If a GLSM is defined by pointsets <7 and %
which are both ./-complete and Z-complete then this model
is nonsingular for generic values of the parameters

e This is weaker than reflexivity, preserved by transitions, and
mirror symmetric

e It is still too strong
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PPy 11111y[3,4]

o1 o o 0o 2 -1

10 -1 -1 -1 4 o0

10 -1 -1 -1 0 o0

10 1 -1 -1 0 o0

1 0 1 o o0 0 o0 1 0 -1 3 -1 0 0

1 0 0o 1 0 0 o0 1 0 -1 -1 3 0 0

1 0 0o o 1 0 o0 1 0 -1 -1 -1 o 4

c o1 0o o o 1 o c o1 0o o o -1 -1
A=1001 o o o o 1| B=lo 1 1 1 o -1 1| @

001 -2 -1 -1 -1 -1 o1 1 0o 1 -1 -1

1 0 0 o0 0 0 o0 o1 1 0o 0 0 -1

o1 0 0 0 0 o0 o1 1 0 0 -1 o

0 1 1 0 0 -1 -1

o1 0 3 0 -1 -1

o1 0o 0 3 -1 -1

o1 0 0 0 -1 2

p=(1,1,0,0,0,0,0) v =(1,1,0,0,0,0,0)  (25)

W = ¢g(p3+¢3+da+da+datd1d2-+d163+d1da+d1¢5+d16)
+ 07(07 + 65 + ¢3 + 04 + b5 + ¢¢), (26)

Can include 126 internal points in %, get a smooth model in
non-Gorenstein ambient space
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P°[4, 2]

0 1 2 0 0 0 —1
1 0 3 —1 —1 -1 0
1 0 1 0 0 0 0 1 0 —1 —1 -1 -1 0
1 0 0 1 0 0 0 1 0 —1 3 —1 —1 0
1 0 0 0 1 0 0 1 0 —1 —1 3 —1 0
At — 1 0 0 0 0 1 0 Bt — 1 0 —1 —1 —1 3 0
I ) 1 0 0 0 0 1 ’ “]1 0 —1 —1 —1 —1 4
0 1 —1 —1 —1 —1 —1 0 1 0 0 0 0 —1
1 0 0 0 0 0 0 0 1 0 2 0 0 —1
0 1 0 0 0 0 0 0 1 0 0 2 0 —1
0 1 0 0 0 2 —1
0 1 0 0 0 0 1
(27)
p=v=(1,1,0,0,0,0,0) (28)

2/ has two triangulations. As promised, one gives X as P%[4, 2].
The other is a “bad hybrid" LG fibration over IP’%A.
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Drop (1,0,0,0,0,0,0) € <, restore reflexivity by adding
(-1,2,1,1,1,1,-2) to &

7 now a simplex, so one phase, a LG orbifold with

W = ¢} + ¢5 + ¢3 + &3 + da + da + bds + ...,

Transition at b = 0, this is the new point added
For b # 0 ¢7 massive, ignoring it we get 2° Gepner model

(29)
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P?2,1,1,1,1,1}[47 3]

Return to first example, remove (1,0,0,0,0,0,0) € <7, add
(—3,4,3,3,3,—4,—4) to &
Find a smooth LG orbifold with

W = ¢+ ¢35 + o5+ ¢3 + da + bog+ 65 +...,  (30)

Transition at b=10

This is the same as our previous example, so family of LG
orbifolds containing 2° has transitions to non-reflexive first
example as well as reflexive example above
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Berglund-Hubsch

Transposing P = A'B in LG models gives Berglund-Hiibsch
mirror symmetry

Our framework naturally incorporates this. Consider the
hypersurface given by

XfXQ + X§X3 + X§X4 + XZLXS + XE? (31)

We understand mirrors of quintics. What phase is this for the
mirror?

Using the standard reflexive pair the mirror has too many
phases to keep track, so choose &7 to be 5 vertices of Conv &/
together with 4 more points given by the first 4 monomials

Find 42 phases. One is just the simplex, mirror to LG model
3°/(Zs)"
Four triangulations admit the form we started with
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Triangulation

— Xy
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Hidden LG Phases

Zs for these includes as compact component a surface and a
set of Ps

But Crit W is a point. Locally near this Zs is C°/Zose
reproducing the Berglund—Hiibsch construction Greene, MRP
Add x3xox3xax5 with large coefficient, mirror becomes
geometric P‘E41748751752764}[256]

Claim: this is the general pattern

An alternate version of this is a smooth exception to our

conjecture, showing that completeness is too strong a
condition
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T-Duality and Local MS

e T-duality naturally leads us to consider W =0

e This is a non-compact model, need boundary conditions?

e The dual model naturally has logarithmic D-terms Hori,Vafa
e GKZ determinant gives vanishing of x,0, W

e Following our method to find &7-determinant for Zy model
recover determinant with multiplicities
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Outlook

We proposed a sufficient condition for a GLSM family to be
generically nonsingular. Proof/counterexample?

Enumerate complete models?

How likely is a geometric phase? No examples known without
one but suspect it is rare? What about large-radius limit more
generally?

Can we state a more refined condition?

Can we find a precise definition of local model?
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