$(2,2)$ Abelian GLSMs, String Vacua, and Mirror Symmetry

M. Ronen Plesser

$(0,2)$ in Paris
IHP, 31/5/2016
P.S. Aspinwall, MRP, arXiv:1507.00301

Outline

Motivation - Mirror Symmetry
GLSM String Vacua
The Pointsets
Low-Energy Theory
Discriminant Loci
Discriminant for \mathscr{B} and GKZ Determinant
Discriminant for \mathscr{A}
Extremal Transitions
Examples
A Non-Reflexive Example Extremal Transitions
Berglund-Hübsch Mirror Symmetry
Local Mirror Symmetry
Conclusions/Outlook

Mirror Symmetry is Deep Geometry?

- MS is a property of $(2,2)$ SCFTs - but it is trivial in SCFT!
- Mirror Symmetry is a property of Calabi-Yau spaces. Some CYs are mirror pairs Which??
- Combinatorial duality for CICY in Gorenstein toric varieties
- In string theory, follow mirror pairs through extremal transitions: (almost) all CY spaces should have a mirror
- Mirror may not be geometrical?

Mirror Symmetry is Abelian Duality?

- Toric models have a UV free description in terms of Abelian GLSMs
- Natural map between toric parameter spaces
- Mirror symmetry is a T-duality of Abelian GLSM
- Abelian GLSMs are mirror pairs Which??
- Some Abelian GLSMs correspond to CY spaces Which??
- Geometry is a side effect in special examples?

Plan

- Describe the combinatorial data determining a family of GLSMs
- Find conditions under which the IR limit determines a family of $\mathcal{N}=(2,2)$ SCFTs with integral $U(1)$ charge
- Look for conditions under which the family is generically nonsingular and check for MS
- Reflexivity, which guarantees a geometric interpretation, is a sufficient condition Batyrev, Borisov; Batyrev, Nill
- Extremal transitions relate reflexive to non-reflexive models
- Formulate a weaker condition which we conjecture is sufficient, but not necessary
- Discuss some interesting examples

A Family of GLSMs

We define a family of $\mathcal{N}=(2,2)$ Abelian GLSMs by:

- A collection of n chiral superfields Φ_{α}
- A gauge group G acting diagonally and effectively via $Q: G \rightarrow \mathrm{U}(1)^{n}$ inducing $\mathfrak{q}: \mathfrak{g} \rightarrow \mathbb{R}^{n}$. For $G_{\mathbb{C}}=\left(\mathbb{C}^{*}\right)^{r} \times \Gamma$ we have r vector superfields $V \in \mathfrak{g}$ with invariant field strength $\Sigma=\frac{1}{\sqrt{2}} \bar{D}_{+} D_{-} V$
- A family of gauge-invariant polynomial superpotentials $W(\Phi)$ determined by a collection of m invariant monomials $M_{\beta}=\prod_{\alpha} \Phi_{\alpha}^{p_{\beta \alpha}}$

The Lagrangian is

$$
\begin{align*}
\mathcal{L}= & \int d^{4} \theta\left(\sum_{\alpha} e^{2 \mathfrak{q}_{\alpha}(V)}\left|\Phi_{\alpha}\right|^{2}-\frac{1}{4 e^{2}}\|\Sigma\|^{2}\right) \\
& +\left(\int d \theta^{+} d \theta^{-} W(\Phi)+\text { с.с. }\right) \tag{1}\\
& +\left(\frac{i}{\sqrt{2}} \int d \theta^{+} d \bar{\theta}^{-}\langle\tau, \Sigma\rangle+\text { с.с. }\right)
\end{align*}
$$

Parameters are

- Coefficients b_{β} in W (not renormalized)
- $\tau=\frac{\theta}{2 \pi}+i \rho$ or $q=e^{2 \pi i \tau}$ (renormalized at one-loop)

The Pointset \mathscr{A}

- Diagonal action gives a map $q: G \rightarrow\left(\mathbb{C}^{*}\right)^{n}$, taking $\operatorname{Hom}\left(-, \mathbb{C}^{*}\right)$
- Get a presentation of $\widehat{G}=\operatorname{Hom}\left(G_{\mathbb{C}}, \mathbb{C}^{*}\right) \sim \mathbb{Z}^{r} \oplus \Gamma$

$$
\begin{equation*}
0 \longrightarrow M \xrightarrow{A^{t}} \mathbb{Z}^{n} \xrightarrow{Q} \widehat{G} \longrightarrow 0, \tag{2}
\end{equation*}
$$

$M \sim \mathbb{Z}^{d}, A \in \operatorname{Mat}_{d \times n}(\mathbb{Z}), d=n-r$, and (free part of) Q is the charge matrix

- Columns of A determine a collection \mathscr{A} of n points α in $N=M^{\vee}$
- With $T_{N}=N \otimes_{\mathbb{Z}} \mathbb{C}^{*}$ recover familiar

$$
\begin{equation*}
1 \longrightarrow G \xrightarrow{Q^{t}}\left(\mathbb{C}^{*}\right)^{\mathscr{A}} \xrightarrow{A} T_{N} \longrightarrow 1 . \tag{3}
\end{equation*}
$$

The Pointset \mathscr{B}

- The map $P: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{n}$ factors through the kernel of Q defining

$$
\begin{equation*}
B: \mathbb{Z}^{m} \rightarrow M \tag{4}
\end{equation*}
$$

with $P=A^{t} B$

- Columns of B determine a collection \mathscr{B} of m points β in M with

$$
\begin{equation*}
W=\sum_{\beta \in \mathscr{B}} b_{\beta} \prod_{\alpha} \Phi_{\alpha}^{\langle\beta, \alpha\rangle} \tag{5}
\end{equation*}
$$

- This is polynomial iff

$$
\begin{equation*}
\mathscr{B} \subset C o n e(\text { Conv } \mathscr{A})^{\vee} . \tag{6}
\end{equation*}
$$

The R-symmetry

- In general, model becomes strongly coupled at low energy and IR dynamics is trivial
- In $\mathcal{N}=(2,2)$ models, a nonanomalous chiral $\mathrm{U}(1)_{R}$ symmetry implies nontrivial IR dynamics
- Our superpotential admits an R symmetry under which gauge invariant chiral operators have integral charge iff

$$
\begin{equation*}
\exists \nu \in N:\langle\beta, \nu\rangle=1, \quad \forall \beta \in \mathscr{B} . \tag{7}
\end{equation*}
$$

\mathscr{B} lies in a primitive hyperplane

- The symmetry will be non-anomalous, and twisted sectors under Γ will have integral charge, iff

$$
\begin{equation*}
\exists \mu \in M:\langle\mu, \alpha\rangle=1, \quad \forall \alpha \in \mathscr{A} \tag{8}
\end{equation*}
$$

\mathscr{A} lies in a primitive hyperplane

GLSM Data

Mirror Symmetry

- If $\langle\mu, \mathscr{A}\rangle=\langle\mathscr{B}, \nu\rangle=1$ IR dynamics governed by $\mathcal{N}=(2,2)$ SCFT with $c=3(d-2 s)$ where $d=n-r ; s=\langle\mu, \nu\rangle$.
- Exchanging \mathscr{A} with \mathscr{B} yields a mirror model. Note our conditions respect the symmetry - with the exception of

$$
\begin{equation*}
\mathscr{B} \subset \text { Cone }(\text { Conv } \mathscr{A})^{\vee} \tag{9}
\end{equation*}
$$

- The pointsets are reflexive if

$$
\begin{equation*}
\text { Cone }(\operatorname{Conv} \mathscr{A})^{\vee}=\text { Cone }(\operatorname{Conv} \mathscr{B}) . \tag{10}
\end{equation*}
$$

Reflexive models come in mirror pairs

Parameter Space

- Varying our parameters is a deformation in well-known conformal manifold
- Coefficients $b \in \mathbb{C}^{m}$ parameterize chiral deformations redundantly. Field redefinitions $b_{\beta} \mapsto \prod_{\alpha} \lambda_{\alpha}^{p_{\beta \alpha}}$ produce a $\left(\mathbb{C}^{*}\right)^{d}$ identification
- Space of inequivalent models compactifies to toric variety \mathscr{M}_{B} associated to secondary fan of \mathscr{B}.
- $\tau \in \mathfrak{g}^{*}$ are local coordinates on toric variety \mathscr{M}_{A} associated to secondary fan of \mathscr{A}, with homogeneous coordinates a_{α} and $q_{a}=\prod_{\alpha} a_{\alpha}^{Q_{a}^{\alpha}}$ invariant under $a_{\alpha} \mapsto \prod_{\beta} \chi_{\beta}^{p_{\beta \alpha}}$
- Natural mirror map of parameter spaces exchanges a_{α} and b_{β}.

We study the parameter space $\mathscr{M}_{A} \times \mathscr{M}_{B}$. This is not the conformal manifold, because

- Our choice for \mathscr{B} might omit some invariant monomials
- In general there are deformations of the SCFT that are not manifest in the GLSM (non-polynomial deformations)
- In general this is a redundant parameterization, there can be additional continuous identifications from nonlinear field redefinitions
- There are points in \mathscr{M}_{B} that do not correspond to a SCFT but to singular limits.
- Same applies to \mathscr{M}_{A}.

A good family is one where the generic model is a SCFT. This is the last condition to be imposed

Classical Vacua

Classical SUSY vacua are zeroes of scalar potential

$$
\begin{align*}
U(x, \sigma) & =|D|^{2}+\sum_{\alpha}\left|F_{\alpha}\right|^{2}+\sigma^{\dagger} M(\phi) \sigma \\
D & =\sum_{\alpha} Q_{\alpha}\left|\phi_{\alpha}\right|^{2}-\rho \in \mathfrak{g}_{\mathbb{R}}^{*} \tag{11}\\
F_{\alpha} & =\frac{\partial W}{\partial \phi_{\alpha}} \\
M & =\sum_{\alpha}{ }^{t} Q_{\alpha} Q_{\alpha}\left|\phi_{\alpha}\right|^{2} \in \mathfrak{g}_{\mathbb{R}}^{\otimes 2}
\end{align*}
$$

Solutions related by the action of G via Q are identified.

Classical Vacua

- Values of ρ for which M has a kernel in the space of solutions to (11) lie in cones and form the faces of a fan in $\mathfrak{g}_{\mathbb{R}}^{*}=\mathbb{R}^{r}$, the secondary fan of \mathscr{A}
- Large cones in this fan are associated to a choice of triangulation of \mathscr{A} which, in turn, determines a fan Σ
- Σ gives an irrelevant ideal B in $S=\mathbb{C}[\phi]$ for ρ in the associated large cone and we get the toric variety

$$
\begin{equation*}
Z_{\Sigma}=\frac{\operatorname{Spec} S-V(B)}{G} \tag{12}
\end{equation*}
$$

is non-compact and $K_{z}=0$. Need not be Gorenstein

- Space of vacua is then $\operatorname{Crit}(W) \subset Z_{\Sigma}$
- In general there are massless chiral fields interacting via a superpotential - bad hybrid
- The classical description is valid for ρ deep in the interior of a large cone (phase limit)

A Familiar Example - $\mathbb{P}_{1,1,2,2,2}^{4}[8]$

\mathscr{A} has 7 points, $d=5$. Five points are vertices of a simplex, one point is in the interior of this, and one along an edge.

There are four phases (triangulations). Using all 7 points, Z_{Σ} is a line bundle over resolved $\mathbb{P}_{1,1,2,2,2}^{4}$
\mathscr{B} has 105 points (degree-8 monomials) lying in a simplex
In mirror model \mathscr{B} has 7 points, superpotential has 7 terms in 105 variables. In LG phase, in which we use only vertices of \mathscr{A} $W=b_{1} x_{1}^{4}+b_{2} x_{2}^{4}+b_{3} x_{3}^{4}+b_{4} x_{4}^{8}+b_{5} x_{5}^{8}+b_{6} x_{4}^{4} x_{5}^{4}+b_{7} x_{1} x_{2} x_{3} x_{4} x_{5}$.

Singularities

- If Crit W has a noncompact component extending to infinity, semiclassical considerations are valid for these vacua and show a continuum of states extending to zero energy, leading to singular low-energy behavior
- Values of ρ in faces of the secondary fan lead to solutions for ϕ for which $M(\phi)$ has a kernel. A continuous subgroup of G is unbroken and associated σ is free, introducing a noncompact component to space of vacua extending to infinity and leading to singular IR dynamics
- There are quantum corrections to this but large-field behavior is very well controlled
- Topological models, where semiclassical limit is exact, show there are no additional singularities, so
- Model is nonsingular if space of (semi-) classical vacua is compact.

Geometry?

- In some phase, Crit W may be a CY variety and SCFT is low-energy limit of NLSM on this for some parameters.
- When does a family include a CY phase?
- In the reflexive case, if \mathscr{A} contains an s - 1 -simplex such that each facet of Conv \mathscr{A} contains $s-1$ of its vertices - a special simplex) - and the same for \mathscr{B}, then there is a phase in which Z_{Σ} is a Gorenstein CY and Crit W is a complete intersection of s hypersurfaces and CY. Exchanging \mathscr{A} and \mathscr{B} get a mirror pair of these Batyrev Borisov; Batyrev, Nill
- There are models for which \mathscr{A} admits a special simplex but \mathscr{B} does not; in this case we have only one geometrical interpretation (Z orbifold; Aspinwall, Greene)
- Can force a geometry by adding $\nu \in N$ to \mathscr{A}. For $s>1$ this leads to a non-CY space

Generic Orbits

- Assume q_{a} sufficiently generic that all σ massive, then space of vacua given by expectation values of ϕ lying in $X_{\Sigma} \subset Z_{\sigma}$
- In fact, singular values of b independent of q so need not choose a phase
- R-symmetry means $\lambda^{\nu}: \mathbb{C}^{*} \rightarrow T_{N}$ given by $\nu \in N$ preserves X_{Σ}
- Orbit of a point with ϕ_{α} all nonzero is noncompact, so if X contains such a point model is singular
- These are determined by a polynomial $\Delta_{\mathscr{B}}$ Gelfand, Kapranov. Zelevinsky
- GKZ show that this occurs for b in the $\left(\mathbb{C}^{*}\right)^{d}$ orbits of points satisfying

$$
\begin{equation*}
\sum_{\beta \in \mathscr{B}}\langle\beta, \alpha\rangle b_{\beta}=0 \quad \forall \alpha \in \mathscr{A} \tag{14}
\end{equation*}
$$

Other Orbits

- Other singularities can be associated to orbits along which some ϕ_{α} vanish
- These must span a cone τ in \mathscr{A} and if this is not a face the resulting toric subvariety $Z_{\Sigma ; \tau}$ is compact
- Υ face of Conv \mathscr{A} and $\Upsilon^{\perp} \subset M_{\mathbb{R}}$ then W restricted to $Z_{\Sigma ; \Upsilon}$ contains monomials from $\mathscr{B} \cap \Upsilon^{\perp}$
- Thus consider faces of Conv \mathscr{B} in boundary of Cone(Conv $\mathscr{A})^{\vee}$. For such a face noncompact orbits will occur at vanishing of $\Delta_{\mathscr{B} \cap\ulcorner }$

The GKZ Determinant

- GKZ study the \mathscr{B}-determinant $E_{\mathscr{B}}$ which determines simultaneous vanishing of $\phi_{\alpha} \partial_{\alpha} W(\phi)$
- This is given by

$$
\begin{equation*}
E_{\mathscr{B}}=\prod_{\Gamma} \Delta_{\mathscr{B} \cap \Gamma}^{u(\Gamma)} \tag{15}
\end{equation*}
$$

- Product over faces proceeds from dimension zero upwards:

1. All vertices are included.
2. Higher dimensional faces are included only when they add points obeying nontrivial affine relations.

- $u(\Gamma)$ positive integers, return to these

Good Families for \mathscr{B}

- If \mathscr{A} and \mathscr{B} are reflexive faces of Conv \mathscr{B} dual to faces of Conv \mathscr{A} so the product is over simultaneous vanishing of subsets of ϕ_{α}
- GKZ show: the variety determined by simultaneous vanishing of $\phi_{\alpha} \partial_{\alpha} W$ is codimension one and corresponds to the determinant function $E_{\mathscr{B}}$. This determinant is generically nonzero.
- Can further show if all orbits are compact X_{Σ} is compact
- If \mathscr{A}, \mathscr{B} reflexive we find nonsingular models for generic b

Twisted Superpotential

- Classically, free σ fields lead to singularity for ρ in faces of cones of secondary fan
- This prediction is subject to quantum corrections, governed by a twisted superpotential holomorphic in q_{a} Witten; Morrison, MRP
- At large, generic values for σ chiral fields massive and integrating them out at one-loop leads to

$$
\begin{equation*}
\widetilde{W}=\frac{1}{2 \pi \sqrt{2}} \sum_{a=1}^{r} \Sigma_{a}\left[\log q_{a}-\sum_{\alpha} Q_{\alpha}^{a} \log \left(\sum_{b=1}^{r} Q_{\alpha}^{b} \Sigma_{b}\right)\right] \tag{16}
\end{equation*}
$$

Coulomb Branch

- Critical points of \widetilde{W} are

$$
\begin{equation*}
q_{a}=\prod_{\alpha}\left(\sum_{b} Q_{\alpha}^{b} \sigma_{b}\right)^{Q_{\alpha}^{a}} \tag{17}
\end{equation*}
$$

- Solutions give noncompact component extending to infinity along codimension one locus in $q_{a}=\prod_{\alpha} a_{\alpha}^{Q_{\alpha}^{a}}$
- This occurs in $\left(\mathbb{C}^{*}\right)^{d}$ orbits containing a solution to

$$
\begin{equation*}
a_{\alpha}=\sum_{b} Q_{\alpha}^{b} \sigma_{b} \tag{18}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{\alpha \in \mathscr{A}}\langle\beta, \alpha\rangle a_{\alpha}=0 \quad \forall \beta \in \mathscr{B} \tag{19}
\end{equation*}
$$

Mixed Branches

- For a subgroup $\widehat{G}_{h} \subset \widehat{G}$ let $\widehat{G}_{c}=\widehat{G} / \widehat{G}_{h}$
- Define

$$
\begin{align*}
& \mathscr{A}_{h}=\left\{\alpha \in \mathscr{A}: \pi_{h} Q e_{\alpha}=0\right\} \\
& \mathscr{A}_{c}=\mathscr{A}-\mathscr{A}_{h} . \tag{20}
\end{align*}
$$

partitioning \mathscr{A} into charged and neutral fields under $\mathfrak{g}_{c}=\operatorname{Hom}\left(\widehat{G}_{c}, \mathbb{C}\right)$

- Give σ a large value in \mathfrak{g}_{c} then \mathscr{A}_{c} are massive and integrating leads to a product of twisted LG for $\sigma \in \mathfrak{g}_{c}$ and a reduced GLSM given by \mathscr{A}_{h} and G_{h} and suitably restricted superpotential

Mixed Branches

- Find flat noncompact σ directions in twisted LG model when

$$
\begin{equation*}
q_{a}=\prod_{\alpha \in \mathscr{A}_{c}}\left(\sum_{b} Q_{c, \alpha}^{b} \sigma_{b}\right)^{Q_{c, \alpha}^{a}} \tag{21}
\end{equation*}
$$

- Reduced GLSM flows to a Coulomb branch, merging with a larger component unless secondary fan for $\mathscr{A}_{h} \subset N_{h}$ is complete, or

1. No point in $\mathscr{A}_{h} \subset N_{h}$ should lie at the origin. \mathscr{A}_{c} spans the subspace $N_{c, \mathbb{R}} \subset N_{\mathbb{R}}$ and so we require $\mathscr{A}_{h} \cap N_{c, \mathbb{R}}=\emptyset$. That is, $\mathscr{A}_{c}=N_{c, \mathbb{R}} \cap \mathscr{A}$.
2. The subspace $N_{c, \mathbb{R}}$ must meet Conv \mathscr{A} along a face.

The \mathscr{A}-Determinant and Mirror Symmetry?

- We almost reproduce the GKZ \mathscr{A}-determinant, up to u factors, except for vertices of Conv \mathscr{A}
- These represent points in compactification of \mathscr{M}_{A}, possibly associated to decompactification of a component of Z_{Σ}
- If Crit W meets these loci we can find singular behavior in the limit
- In \mathscr{M}_{B} these points generally nonsingular
- We have enough to conclude: If \mathscr{A} and \mathscr{B} are reflexive then the generic element of the family is nonsingular
- Obviously this condition is mirror symmetric

Extremal Transitions

- Extremal transitions will in general connect reflexive to non-reflexive models
- Dropping $\alpha \in \mathscr{A}$ sets $\mathrm{a}_{\alpha}=0$ picking out a class of triangulations of \mathscr{A}
- In general this will typically generate an "exoflop" phase with a growing component sticking out of a singularity in CY component Aspinwall, Greene; Addington,Aspinwall
- Smooth the CY dropping the extra component by a deformation (adding new points to \mathscr{B})
- Check that there are no remaining singularities to blow up by adding points to \mathscr{A}
- In general this takes reflexive model to non-reflexive

A Sufficient Condition?

Definition
The pointsets $(\mathscr{A}, \mathscr{B})$ are \mathscr{B}-complete if

$$
\begin{equation*}
\operatorname{Conv}\left(\operatorname{Cone}(\operatorname{Conv} \mathscr{A})^{\vee} \cap M \cap H_{\nu}\right)=\operatorname{Conv}(\mathscr{B}), \tag{22}
\end{equation*}
$$

and similarly \mathscr{A}-complete if

$$
\begin{equation*}
\operatorname{Conv}\left(\operatorname{Cone}(\operatorname{Conv} \mathscr{B})^{\vee} \cap N \cap H_{\mu}\right)=\operatorname{Conv}(\mathscr{A}) \tag{23}
\end{equation*}
$$

- We Conjecture: If a GLSM is defined by pointsets \mathscr{A} and \mathscr{B} which are both \mathscr{A}-complete and \mathscr{B}-complete then this model is nonsingular for generic values of the parameters
- This is weaker than reflexivity, preserved by transitions, and mirror symmetric
- It is still too strong

$$
\begin{gather*}
A^{t}=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & -2 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad B^{t}=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 2 & -1 \\
1 & 0 & -1 & -1 & -1 & 4 & 0 \\
1 & 0 & -1 & -1 & -1 & 0 & 0 \\
1 & 0 & 1 & -1 & -1 & 0 & 0 \\
1 & 0 & -1 & 3 & -1 & 0 & 0 \\
1 & 0 & -1 & -1 & 3 & 0 & 0 \\
1 & 0 & -1 & -1 & -1 & 0 & 4 \\
0 & 1 & 0 & 0 & 0 & -1 & -1 \\
0 & 1 & 1 & 1 & 0 & -1 & -1 \\
0 & 1 & 1 & 0 & 1 & -1 & -1 \\
0 & 1 & 1 & 0 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 & -1 & -1 \\
0 & 1 & 0 & 3 & 0 & -1 & -1 \\
0 & 1 & 0 & 0 & 3 & -1 & -1 \\
0 & 1 & 0 & 0 & 0 & -1 & 2
\end{array}\right) \tag{24}\\
\mu=(1,1,0,0,0,0,0) \quad \nu=(1,1,0,0,0,0,0)
\end{gather*}
$$

$W=\phi_{8}\left(\phi_{2}^{3}+\phi_{3}^{3}+\phi_{4}^{3}+\phi_{5}^{3}+\phi_{6}^{3}+\phi_{1} \phi_{2}+\phi_{1} \phi_{3}+\phi_{1} \phi_{4}+\phi_{1} \phi_{5}+\phi_{1} \phi_{6}\right)$

$$
\begin{equation*}
+\phi_{7}\left(\phi_{1}^{2}+\phi_{2}^{4}+\phi_{3}^{4}+\phi_{4}^{4}+\phi_{5}^{4}+\phi_{6}^{4}\right), \tag{26}
\end{equation*}
$$

Can include 126 internal points in \mathscr{B}, get a smooth model in non-Gorenstein ambient space

$$
\mathbb{P}^{5}[4,2]
$$

$$
A^{t}=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 \tag{27}\\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad B^{t}=\left(\begin{array}{ccccccc}
0 & 1 & 2 & 0 & 0 & 0 & -1 \\
1 & 0 & 3 & -1 & -1 & -1 & 0 \\
1 & 0 & -1 & -1 & -1 & -1 & 0 \\
1 & 0 & -1 & 3 & -1 & -1 & 0 \\
1 & 0 & -1 & -1 & 3 & -1 & 0 \\
1 & 0 & -1 & -1 & -1 & 3 & 0 \\
1 & 0 & -1 & -1 & -1 & -1 & 4 \\
0 & 1 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 2 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 2 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\begin{equation*}
\mu=\nu=(1,1,0,0,0,0,0) \tag{28}
\end{equation*}
$$

\mathscr{A} has two triangulations. As promised, one gives X as $\mathbb{P}^{5}[4,2]$. The other is a "bad hybrid" LG fibration over $\mathbb{P}_{2,4}^{1}$.

- Drop $(1,0,0,0,0,0,0) \in \mathscr{A}$, restore reflexivity by adding $(-1,2,1,1,1,1,-2)$ to \mathscr{B}
- \mathscr{A} now a simplex, so one phase, a LG orbifold with

$$
\begin{equation*}
W=\phi_{1}^{4}+\phi_{2}^{4}+\phi_{3}^{4}+\phi_{4}^{4}+\phi_{5}^{4}+\phi_{6}^{4}+b \phi_{7}^{2}+\ldots, \tag{29}
\end{equation*}
$$

- Transition at $b=0$, this is the new point added
- For $b \neq 0 \phi_{7}$ massive, ignoring it we get $\mathbf{2}^{6}$ Gepner model

$\mathbb{P}_{\{2,1,1,1,1,1\}}^{5}[4,3]$

- Return to first example, remove $(1,0,0,0,0,0,0) \in \mathscr{A}$, add $(-3,4,3,3,3,-4,-4)$ to \mathscr{B}
- Find a smooth LG orbifold with

$$
\begin{equation*}
W=\phi_{1}^{4}+\phi_{2}^{4}+\phi_{3}^{4}+\phi_{4}^{4}+\phi_{5}^{4}+b \phi_{6}^{4}+\phi_{7}^{2}+\ldots, \tag{30}
\end{equation*}
$$

- Transition at $b=0$
- This is the same as our previous example, so family of LG orbifolds containing 2^{6} has transitions to non-reflexive first example as well as reflexive example above

Berglund-Hübsch

- Transposing $P=A^{t} B$ in LG models gives Berglund-Hübsch mirror symmetry
- Our framework naturally incorporates this. Consider the hypersurface given by

$$
\begin{equation*}
x_{1}^{4} x_{2}+x_{2}^{4} x_{3}+x_{3}^{4} x_{4}+x_{4}^{4} x_{5}+x_{5}^{5} \tag{31}
\end{equation*}
$$

- We understand mirrors of quintics. What phase is this for the mirror?
- Using the standard reflexive pair the mirror has too many phases to keep track, so choose \mathscr{A} to be 5 vertices of Conv \mathscr{A} together with 4 more points given by the first 4 monomials
- Find 42 phases. One is just the simplex, mirror to LG model $3^{5} /\left(\mathbb{Z}_{5}\right)^{4}$
- Four triangulations admit the form we started with

Triangulation

Hidden LG Phases

- Z_{Σ} for these includes as compact component a surface and a set of $\mathbb{P}^{1} \mathrm{~s}$
- But Crit W is a point. Locally near this Z_{Σ} is $\mathbb{C}^{5} / \mathbb{Z}_{256}$ reproducing the Berglund-Hübsch construction Greene, MRP
- Add $x_{1} x_{2} x_{3} x_{4} x_{5}$ with large coefficient, mirror becomes geometric $\mathbb{P}_{\{41,48,51,52,64\}}^{4}[256]$
- Claim: this is the general pattern
- An alternate version of this is a smooth exception to our conjecture, showing that completeness is too strong a condition

T-Duality and Local MS

- T-duality naturally leads us to consider $W=0$
- This is a non-compact model, need boundary conditions?
- The dual model naturally has logarithmic D-terms Hori, Vafa
- GKZ determinant gives vanishing of $x_{\alpha} \partial_{\alpha} W$
- Following our method to find \mathscr{A}-determinant for Z_{Σ} model recover determinant with multiplicities

Outlook

- We proposed a sufficient condition for a GLSM family to be generically nonsingular. Proof/counterexample?
- Enumerate complete models?
- How likely is a geometric phase? No examples known without one but suspect it is rare? What about large-radius limit more generally?
- Can we state a more refined condition?
- Can we find a precise definition of local model?

