New Evidence for (0, 2) Target Space Duality

Lara B. Anderson

Department of Physics, Virginia Tech

Work done in collaboration with:

H. Feng

ArXiv:1606.?????

(0,2) Workshop, Paris - May 30th, 2016

Image: A math a math

(0,2) GLSMs in a nutshell

- \bullet Abelian, massive 2D theory $\stackrel{\mathrm{IR \ flow}}{\longrightarrow}$ (0,2) CFT
- U(1) gauge fields $A^{(\alpha)}$, $\alpha = 1, \ldots r$
- Chiral superfields: $\{X_i | i = 1, ..., d\}$ charge $(Q_i^{(\alpha)}), \{P_l | l = 1, ..., \gamma\}$, charge $(-M_l^{\alpha})$.
- Fermi superfields: $\{\Lambda^a | a = 1..., \delta\}$ charge $N_a^{(\alpha)}$, $\{\Gamma_j^{(\alpha)} | j = 1...c\}$ charge $(-S_j^{(\alpha)})$.
- Gauge and gravitational anomaly cancellation:

$$\sum_{a=1}^{\delta} N_a^{(\alpha)} = \sum_{l=1}^{\gamma} M_l^{(\alpha)} \qquad \qquad \sum_{i=1}^{d} Q_i^{(\alpha)} = \sum_{j=1}^{c} S_j^{(\alpha)}$$
$$\sum_{j=1}^{\gamma} M_l^{(\alpha)} M_l^{(\beta)} - \sum_{a=1}^{\delta} N_a^{(\alpha)} N_a^{(\beta)} = \sum_{j=1}^{c} S_j^{(\alpha)} S_j^{(\beta)} - \sum_{i=1}^{d} Q_i^{(\alpha)} Q_i^{(\beta)}$$

for all $\alpha, \beta = 1, ..., r$.

A D > A P > A B > A

We encapsulate all this information in a table:

<ロ> (日) (日) (日) (日) (日)

The GLSM potential

- Superpotential: $S = \int d^2 z d\theta \left[\sum_j \Gamma^j G_j(X_i) + \sum_{I,a} P_I \Lambda^a F_a^I(X_i) \right]$
- G_j and $F_a^{\,\prime}$ are quasi-homogeneous polynomials w/ multi-degrees:

		G ^j	
<i>s</i> ₁	<i>s</i> ₂		S _c

	Fa ¹		
$M_1 - N_1$	$M_1 - N_2$		$M_1 - N_{\delta}$
$M_2 - N_1$	$M_2 - N_2$		$M_2 - N_{\delta}$
:	:	۰.	:
$M_{\gamma} - N_1$	$M_{\gamma} - N_2$		$M_{\gamma} - N_{\delta}$

- F-term: $V_F = \sum_j |G_j(x_i)|^2 + \sum_a |\sum_l p_l F_a^l(x_i)|^2$
- D-term: $V_D = \sum_{\alpha=1}^r \left(\sum_{i=1}^d Q_i^{(\alpha)} |x_i|^2 \sum_{l=1}^{\gamma} M_l^{(\alpha)} |p_l|^2 \xi^{(\alpha)} \right)^2$
- Transversality condition: $F'_a(x_i) = 0$ only when $x_i = 0 \ \forall i$
- FI Parameter $(\xi^{(\alpha)} \in \mathbb{R})$ controls the *phases*

- E.g. $\xi > 0 \Rightarrow G_j(X_i) = 0$ and $\langle P \rangle = 0 \Rightarrow$ Geometric phase.
- Geometry: (X, V) with X a CY and bundle described via a monad:

$$0 \to \mathcal{O}_{\mathcal{M}}^{\oplus_{\mathcal{V}_{\mathcal{V}}}} \xrightarrow{\otimes E_{i}^{a}} \oplus_{a=1}^{\delta} \mathcal{O}_{\mathcal{M}}(N_{a}) \xrightarrow{\otimes F_{a}^{l}} \oplus_{l=1}^{\gamma} \mathcal{O}_{\mathcal{M}}(M_{l}) \to 0$$

with $V = \frac{\ker(F_a^l)}{\operatorname{im}(E_a^a)}$

- E.g. $\xi < 0 \Rightarrow \langle p \rangle \neq 0 \Rightarrow$ Non-geometric phase
- E.g. Landau-Ginzburg orbifold w. superpotential:

$$\mathcal{W}(X_i, \Lambda^a, \Gamma^i) = \sum_j \Gamma^j G_j(X_i) + \sum_a \Lambda^a F_a(X_i)$$

• With multiple U(1)s, hybrid phases.

- Observation (Distler, Kachru): In LG-phase, G and F on equal footing. Could be interchanged... Algorithm:
- Find phase with one $\langle p_l \rangle \neq 0$ for some l.
- Rescale: $\tilde{\Lambda}^{a_i} := \frac{\Gamma^{j_i}}{\langle p_1 \rangle}, \ \tilde{\Gamma}^{j_i} := \langle p_1 \rangle \Lambda^{a_i} \ \forall i = 1, \dots k \text{ s.t. } \sum_i ||G_{j_i}|| = \sum_i ||F_{a_i}||$
- Move to a region in bundle moduli space where Λ^{a_i} appear only with P_1 $\forall i \Rightarrow F_{a_i}^l = 0 \ \forall l \neq 1, \ i = 1, \dots k.$
- Leave non-geometric phase and define new Fermi superfields s.t. $||\tilde{\Lambda}^{a_i}|| = ||\Gamma^{j_i}|| - ||P_1|| \text{ and } ||\tilde{\Gamma}^{j_i}|| = ||\Lambda^{a_i}|| + ||P_1||. \text{ item Return to a generic}$ pt. in moduli space to define new TS dual (0,2) GLSM w/ new geometric phase: $(\tilde{X}, \tilde{V}).$

<ロ> (日) (日) (日) (日) (日)

Example

			×i				Ŀ	j		۸	а		PJ
0	0	0	1	1	1	1	-2	-2	1	0	0	2	-3
1	1	1	2	2	2	0	-4	-5	0	1	1	6	-8

• SU(3) bundle with

$$\begin{aligned} \dim(\mathcal{M}_0) &= h^{1,1}(X) + h^{2,1}(X) + h^1(\mathit{End}_0(V)) = 2 + 68 + 322 = 392, \\ h^*(V) &= (0, 120, 0, 0) \text{ (no. of } \mathbf{27}\text{'s)} \end{aligned}$$

- Here $||G_1|| = (2,4), ||G_2|| = (2,5), ||F_1^1|| = (2,8), ||F_2^1|| = (3,7),$ $||F_3^1|| = (3,7), ||F_4^1|| = (1,2)$
- $\bullet\,$ Sum of third and fourth F equals sum of two hypersurface degrees.
- Redefine: $\tilde{\Gamma}^1 = \langle p_1 \rangle \Lambda^3$, $\tilde{\Gamma}^2 = \langle p_1 \rangle \Lambda^4$, $\tilde{\Lambda}^3 = \frac{\Gamma^1}{\langle p_1 \rangle}$, $\tilde{\Lambda}^4 = \frac{\Gamma^2}{\langle p_1 \rangle}$, $\tilde{G} = F_3^1$, $\tilde{G}_2 = F_4^1$, $\tilde{F}_3^1 = G_1$, $\tilde{F}_4^1 = G_2$
- Superpotential: $\mathcal{W} = \tilde{\Gamma}^1 \tilde{G}_1 + \tilde{\Gamma}^2 \tilde{G}_2 + \langle p_1 \rangle (\tilde{\Lambda}^3 \tilde{F}_3^1 + \tilde{\Lambda}^4 \tilde{F}_4^1 + \Lambda^1 F_1^1 + \Lambda^2 F_2^1)$

Example

• $||\tilde{G}_1|| = (3,7), ||\tilde{G}_2|| = (1,2), ||\tilde{F}_3^1|| = (2,4), ||F_4^1|| = (2,5), ||\tilde{\Gamma}^1|| = (-3,-7), ||\tilde{\Gamma}^2|| = (-1,-2) ||\tilde{\Lambda}^3|| = (1,4), ||\tilde{\Lambda}^4|| = (1,3).$

• Leads to new geometry $(\widetilde{X}, \widetilde{V})$

		х	ï			гj		Λ	a		PJ
0	0	0	1	1	1	-3	1	0	1	1	-3
1	1	1	2	2	0	-7	0	1	4	3	-8

- $dim(\widetilde{\mathcal{M}}_0) = h^{1,1}(\widetilde{X}) + h^{2,1}(\widetilde{X}) + h^1(End_0(\widetilde{V})) = 2 + 95 + 295 = 392,$ $h^*(\widetilde{V}) = (0, 120, 0, 0)$
- Here $h^{1,1}$ stays fixed, complex structure and bundle moduli interchange.
- More general mixing possible...

Can find an alternate description of \boldsymbol{X} to open up more possibilities:

- Add a new coord y_1 with multi-degree B and a new hypersurface also of degree B
- Perform previous procedure (e.g. $||B|| = ||F_1^1|| + ||F_2^1|| 1)$
- Resolve singularities (Distler, Greene, Morrison) by formally adding a \mathbb{P}^1 (another coord y_2)
- Set constraint $G^B = y_1 = 0$ to eliminate y_1 . Use additional U(1) and D-term to fix y_2 to a real constant. $\leftrightarrow X \times$ a single pt.
- \bullet Leads to $(\widetilde{X},\widetilde{V})$ with higher $h^{1,1}$
- In general, all numbers of moduli mixed.

0 0 1 1 0 0 -1 0 0 0 -1 0											1	···a	 ^1
	0	 0	-1	0	 0	0	-1	0	 0	1	1	0	 0
$\begin{vmatrix} Q_1 & \dots & Q_d & B & 0 \end{vmatrix} -S_1 & \dots & -S_c & -B \end{vmatrix} \begin{vmatrix} N_1 & N_2 & \dots & N_\delta \end{vmatrix} -M_1 & -M_2 & \dots & -M_1 & -M_1 & -M_2 & -M_1 & -M_2 & -M_2 & -M_1 & -M_2 &$	$-M_{\gamma}$	 -M2	$-M_1$	N_{δ}	 N_2	N1	-B	$-S_c$	 -S1	0	В	Qd	 Q_1

End up with new geometry:

×1	 ×d	У1	y 2	Γ ¹	 ۲ ^c	Γ ^Β	Ã ¹	Ã ²	 P1	P2	
0	 0	1	1	-1	 0	-1	1	0	 -1	0	
Q_1	 Qd	в	0	$-(M_1 - N_1)$	 $-S_c$	$-(M_1-N_2)$	0	$M_2 - B$	 $-M_1$	$-M_{2}$	

- Can choose B (e.g. B = 0) to make this a conifold transition between $X \leftrightarrow \widetilde{X}$ ("Transgression", Candelas, et al).
- Can repeat this many times. In general all moduli mixed (and any one can be held fixed).
- What to make of this TS duality?
- Two possibilities
 - Two distinct theories, connected in moduli space (e.g. like conifold transitions in Type II theories)
 - **2** A true duality (i.e. isomorphism) of target space theories

A D > A P > A B > A

The question...

• In 2011, Blumenhagen + Rahn performed a landscape scan. Tested duality by counting states:

$$h^{1,1}(X) + h^{2,1}(X) + h^1(End_0(V)) = h^{1,1}(\widetilde{X}) + h^{2,1}(\widetilde{X}) + h^1(End_0(\widetilde{V}))$$

and charged matter in $\sim 80,000$ examples. Agreement in nearly all cases.

- Question: Can we test this duality (even in the geometric, perturbative regime) in more detail?
- Recall, these are N = 1 4D theories. Want more than $\dim(\mathcal{M}_0)... \Rightarrow$ Moduli can be obstructed!
- Can we compare the effective potential and vacuum space of the chain of dual theories?
- Must engineer examples with interesting/calculable potentials...

Our starting point...

- Thanks to recent progress (LA, Gray, Lukas, Ovrut) know more about how to do this...
- Conditions for N = 1 Supersymmetry in 4D: Hermitian-Yang Mills Eqns $F_{ab} = F_{\overline{ab}} = g^{a\overline{b}}F_{\overline{b}a} = 0$
- $g^{a\overline{b}}F_{\overline{b}a}=0$ \Leftrightarrow Donaldson-Uhlenbeck-Yau Thm: V is slope, poly-stable.
- $F_{ab} = F_{\overline{ab}} = 0$: V is holomorphic.
- Stability $\Leftrightarrow 4D$ D-terms
- Holomorphy $\Leftrightarrow 4D$ F-terms
- Can we test TS duality for examples with non-trivial moduli obstructions?
- Will choose simple e.g.s: Ordinary CICYs, $0 \to V \to B \to C \to 0$, $c_2(TX) = c_2(V)$

• The slope, $\mu(V)$, of a vector bundle is

$$\mu(V) \equiv \frac{1}{\mathrm{rk}(V)} \int_X c_1(V) \wedge \omega \wedge \omega$$

where $\omega = t^k \omega_k$ is the Kahler form on X (ω_k a basis for $H^{1,1}(X)$).

- V is Stable if for every sub-sheaf, $\mathcal{F} \subset V$, with $0 < rk(\mathcal{F}) < rk(V)$, $\mu(\mathcal{F}) < \mu(V)$
- V is Poly-stable if $V = \bigoplus_i V_i$, V_i stable such that $\mu(V) = \mu(V_i) \forall i$
- Conservation of Misery \rightarrow Tough to find sub-sheaves.

イロト イポト イヨト イヨ

- Monad E.g. CY 3-fold, $X = \begin{bmatrix} p^1 & 2 \\ p^3 & 4 \end{bmatrix}$, with $h^{1,1} = 2$.
- V an SU(3) bundle defined by

$$0 o V o \mathcal{O}_X(1,0) \oplus \mathcal{O}_X(1,-1) \oplus \mathcal{O}_X(0,1)^{\oplus 2} \stackrel{f}{\longrightarrow} \mathcal{O}_X(2,1) o 0$$

which is destabilized in part of the Kähler cone by the rank 2 sub-bundle $0 \to \mathcal{F} \to \mathcal{O}_X(1,0) \oplus \mathcal{O}_X(0,1)^{\oplus 2} \to \mathcal{O}_X(2,1) \to 0$ with $c_1(\mathcal{F}) = -\omega_1 + \omega_2$.

- On a line (in general a hyperplane) in Kähler moduli space, the sub-sheaf
 F becomes important
- $\bullet\,$ Can describe V in terms of this sub-sheaf as $0\to {\cal F}\to V\to V/{\cal F}\to 0$
- Space of such extensions given by $Ext^1((V/\mathcal{F}), \mathcal{F}) = H^1(X, \mathcal{F} \otimes (V/\mathcal{F})^{\vee})$, where the origin of this group is a locus in the moduli space of V for which $V = \mathcal{F} \oplus V/\mathcal{F}$, with $c_1(\mathcal{F}) = -c_1(V/\mathcal{F})$
- On the line with $\mu(\mathcal{F}) = 0$, for SUSY to exist, need

 $V = \bigoplus_i V_i = \mathcal{F} \oplus V/\mathcal{F}$ to have a poly-stable bundle.

• This means the structure group changes!

 $SU(3) \rightarrow S[U(2) \times U(1)]$. Locally $S[U(2) \times U(1)] \approx SU(2) \times U(1)$

• Enhancement of symmetry $\rightarrow E_6 \times U(1)$. New U(1) gauge field in the visible 4d theory. (Sharpe)

Lara Anderson (VT)

- E.g. $SU(3) \rightarrow S[U(2) \times U(1)]$.
- The enhanced U(1) is Green-Schwarz massive.
- Matter fields and "moduli" are now charged under this U(1). Locally, $E_8 \supset E_6 \times SU(2) \times U(1)$ 248 $\rightarrow (1,1)_0 + (1,2)_{-3/2} + (1,2)_{3/2} + (1,3)_0 + (78,1)_0 + (27,1)_1 + (27,2)_{-1/2} + (27,1)_{-1} + (27,2)_{1/2}$
- Bundle moduli decompose as

$$\begin{aligned} H^{1}(V \otimes V^{\vee}) &\to \begin{cases} H^{1}(\mathcal{F} \otimes \mathcal{F}^{\vee}) + H^{1}(\mathcal{F} \otimes \mathcal{K}^{\vee}) + H^{1}(\mathcal{K} \otimes \mathcal{F}^{\vee} \\ (1,3)_{0} &+ (1,2)_{-3/2} &+ (1,2)_{3/2} \end{cases} \\ \bullet \ E_{6} \text{ Matter: } H^{1}(V) &\to \begin{cases} H^{1}(\mathcal{K}) + H^{1}(\mathcal{F}) \\ (27,1)_{1} + (27,2)_{-1/2} \end{cases} \end{aligned}$$

• • • • • • • • • • •

- The complexified Kähler moduli, $T^k = t^k + 2i\chi^k$, transform with a shift symmetry through the axion, χ^k
- U(1) D-term contribution to the 4d effective potential (Sharpe, Lukas, Stelle, Blumenhagen, Weigand, Honecker,...).

$$D^{U(1)} \sim rac{\mu(\mathcal{F})}{Vol(X)} - \sum_{M,ar{N}} Q^M G_{Mar{N}} C^M ar{C}^{ar{N}}$$

with (FI)-term $\sim \mu(\mathcal{F})$ -the slope of the relevant sub-bundle \mathcal{F} , C^M are U(1) charged fields.

- This D-term potential is independent of complex structure moduli for all anomaly free and N = 1 SUSY theories.
- Stability walls can lead to transitions between bundles (S-equivalence classes, etc).
- Kähler cone substructure can lead to constraints on phenomenology: Yukawa textures, etc.

Holomorphic Vector bundles

- V holomorphic if $F_{ab} = F_{\bar{a}\bar{b}} = 0$
- Suppose we begin with a holomorphic bundle and then vary the complex structure? Must a bundle stay holomorphic for any variation $\delta \mathfrak{z}^{\prime} v_{l} \in h^{2,1}(X)? \Rightarrow No$
- $0 \to V \otimes V^{\vee} \to Q \xrightarrow{\pi} TX \to 0$ is known as the Atiyah sequence.
- The long exact sequence in cohomology gives us

$$0 \to H^1(V \otimes V^{\vee}) \to H^1(\mathcal{Q}) \stackrel{d\pi}{\to} H^1(TX) \stackrel{\alpha}{\to} H^2(V \otimes V^{\vee}) \to \dots$$

- If the map $d\pi$ is surjective then $H^1(\mathcal{Q}) = H^1(V \otimes V^{\vee}) \oplus H^1(TX)$
- But $d\pi$ not surjective in general! $H^1(\mathcal{Q}) = H^1(V \otimes V^{\vee}) \oplus Im(d\pi)$
- $d\pi$ difficult to define, but by exactness, $Im(d\pi) = Ker(\alpha)$ where $\alpha = [F^{1,1}] \in H^1(V \otimes V^{\vee} \otimes TX^{\vee})$ is the Atiyah Class

Deformation Theory

There are three objects in deformation theory that we need

- Def(X): Deformations of X as a complex manifold. Infinitesimal defs parameterized by the vector space $H^1(TX) = H^{2,1}(X)$. These are the *complex structure* deformations of X.
- Def(V): The deformation space of V (changes in connection, δA) for fixed C.S. moduli. Infinitesimal defs measured by $H^1(End(V)) = H^1(V \otimes V^{\vee})$. These define the *bundle moduli* of V.
- Def(V, X): Simultaneous holomorphic deformations of V and X. The tangent space is $H^1(X, Q)$ where

$$0 \to V \otimes V^{\vee} \to \mathcal{Q} \xrightarrow{\pi} TX \to 0$$

If \mathcal{P} is the total space of the bundle, $\mathcal{Q} = r_* T \mathcal{P}$.

 H¹(X, Q) are the actual complex moduli of a heterotic theory = → = → ∩ ∩ ∩ Lara Anderson (VT) New Evidence for (0, 2) Target Space Duality Paris- May 30th, '16 19 / 33

GVW Superpotential and F-terms

 \bullet For the 4d Theory: We have Gukov-Vafa-Witten superpotential

$$W = \int_{X} \Omega \wedge H$$
 where $H = dB - \frac{3\alpha'}{\sqrt{2}} \left(\omega^{3YM} - \omega^{3L} \right)$

 $\bullet\,$ In Minkowski vacuum (with $\,W=0),$ F-terms:

$$F_{C_i} = \frac{\partial W}{\partial C_i} = -\frac{3\alpha'}{\sqrt{2}} \int_X \Omega \wedge \frac{\partial \omega^{3YM}}{\partial C_i}$$

• Dimensional Reduction Anzatz: $A_{\mu} = A^{(0)}_{\mu} + \delta A_{\mu} + \bar{\omega}^{i}_{\mu} \delta C_{i} + \omega^{i}_{\mu} \delta \bar{C}_{i}$

$$F_{C_i} = \int_X \epsilon^{\bar{a}\bar{c}\bar{b}} \epsilon^{abc} \Omega^{(0)}_{abc} 2\bar{\omega}^{\times i}_{\bar{c}} \operatorname{tr}(T_{\times}T_{y}) \left(\delta \mathfrak{z}' v^{c}_{I[\bar{a}} F^{(0)y}_{|c|\bar{b}]} + 2D^{(0)}_{[\bar{a}} \delta A^{y}_{\bar{b}]} \right)$$

- Computationally: $Ker(\alpha)$: Free C.S. moduli. $Im(\alpha)$: lifted C.S. moduli.
- Superpotential observations in lit. since 80's. Hard part is engineering calculable examples.
- Idea: Build bundles where "ingredients" crucially depend on complex structure...

- Build monad bundles with F-term and D-term obstructions
- Analyze the vacuum space
- Systematically construct all TS dual geometries
- Compare...
- Note: Counting is easiest... so begin w/ examples that lift, rather than just constrain moduli
- Caveat: Many interesting questions to ask of the GLSM, for this talk I will focus solely on comparing the target space theories generated in the geometric phases.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

		,	ï			г ^j				۸a						PJ	
1	1	0	0	0	0	-2	1	$^{-1}$	0	0	2	1	1	2	-3	$^{-1}$	-2
0	0	1	1	1	1	-4	-1	1	1	1	1	2	2	2	-2	-4	-3

with initial total moduli count

$$dim(\mathcal{M}_0) = h^{1,1}(X) + h^{2,1}(X) + h^1(X, End_0(V)) = 2 + 86 + 340 = 428$$

What is the effective target space theory in the geometric phase?

- Naively: rk(V) = 5, $c_1(V) = 0 \Rightarrow SU(5)$ 4D theory.
- Not so fast though... Mixed positive/negative entries in Λ^a indicate sub-sheaves.
- In fact, V stable only on a ray in Kähler moduli space $t^2 = 4t^1$.
- Only supersymmetric configuration of V: $V \to U_3 \oplus L \oplus L^{\vee} \text{ w}/L = \mathcal{O}(1, -1).$

• Non-Abelian Enhancement: Structure group is not SU(5), rather $S[U(1) \times U(1)] \times SU(3) \subset E_8 \Rightarrow SU(6) \times U(1)$, with U(1) symmetry Green-Schwarz massive.

Field	Cohom.	Multiplicity	Field	Cohom.	Multiplicity
1 ₊₂	$H^1(L\otimes L)$	0	1 ₋₂	$H^1(L^{ee}\otimes L^{ee})$	10
15 0	$H^1(U_3^{\vee})$	0	$\overline{15}_{0}$	$H^{1}(U_{3})$	80
20 ₊₁	$H^1(L)$	0	20 ₋₁	$H^1(L^{\vee})$	0
6 ₊₁	$H^1(L \otimes U_3)$	72	6 ₋₁	$H^1(L^{\vee}\otimes U_3)$	90
$\overline{6}_{+1}$	$H^1(L\otimes U_3^{\vee})$	0	$\overline{6}_{-1}$	$H^1(L^{\vee}\otimes U_3^{\vee})$	2
1 0	$H^1(U_3 \otimes {U_3}^{ee})$	166			

Table : Particle content of the $SU(6) \times U(1)$ theory associated to the bundle along its reducible and poly-stable locus $V = O(-1,1) \oplus O(1,-1) \oplus U_3$ (i.e. on the stability wall).

Image: A math a math

- Non-trivial D-term lifts one Kähler modulus. Reduction in moduli $dim(\mathcal{M}_1) = dim(\mathcal{M}_0) 1 = 427$
- Bundle forced to locus w/ non-Abelian symmetry enhancement
- From the stability wall, can explore branch structure into nearby geometries.
- How much of this is visible in the TS duals?
- In this case can construct a chain of 17 TS dual geometries w/ conifold-type "splits" $\rightarrow h^{1,1} + 1$. What do we get?...

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

TS dual of D-term e.g.

One example:

			,	ï				Ŀ	j				۸a						PJ	
0	0	0	0	0	0	1	1	-1	$^{-1}$	0	0	1	0	0	0	0	0	0	0	$^{-1}$
1	1	0	0	0	0	0	0	-2	0	1	$^{-1}$	0	0	2	1	1	2	-3	$^{-1}$	-2
0	0	1	1	1	1	0	0	-2	-2	-1	1	$^{-1}$	1	3	2	2	2	-2	-4	-3

Questions:

- Does (\tilde{X}, \tilde{V}) give rise to a stability wall?
- **2** What is $\dim(\widetilde{\mathcal{M}}_0)$? Is $\dim(\widetilde{\mathcal{M}}_1)$ reduced by the same amount?
- Obes the structure group of V reduce as well, leading to a 4-dimensional non-Abelian enhancement of symmetry?
- Do the charged matter spectra of the two theories match?
- O Does the vacuum branch structure (i.e. local deformation space) correspond?

TS Dual

• First pass yields a discrepancy...

 $dim(\tilde{\mathcal{M}}_{0}) = h^{1,1}(\widetilde{X}) + h^{2,1}(\widetilde{X}) + h^{1}(X, End_{0}(\widetilde{V})) = 3 + 55 + 371 = 429$

- However, this isn't quite the right count. Three de-stabilizing sub-sheaves for \widetilde{V} . Stability condition on the wall reduces free Kähler moduli by 2 (two D-terms). $\Rightarrow \dim(\widetilde{\mathcal{M}}_1) = 427$. Agreement!
- Once again, \widetilde{V} is *forced* to be reducible: $\widetilde{V} \to (\widetilde{L}_1 \oplus \widetilde{L}_1^{\vee}) \oplus (\widetilde{L}_2 \oplus \widetilde{U}_2)$
- Structure group is $S[U(1) \times U(1)] \times S[U(1) \times U(2)] \Rightarrow$ $SU(6) \times U(1) \times U(1) \text{ w/ both } U(1) \text{s GS massive.}$
- First three questions manifestly answered in the positive!

A D > A B > A B >

Field	Cohom.	Multiplicity	Field	Cohom.	Multiplicity
1 _{+2,0}	$H^1(ilde{L}_1\otimes ilde{L}_1)$	0	1 _{-2,0}	$H^1(ilde{L}_1^ee\otimes ilde{L}_1^ee)$	10
15 _{0,-1}	$H^1(ilde U_2^ee)$	0	15 _{0,+1}	$H^1(ilde U_2)$	80
15 _{0,+2}	$H^1(\widetilde{L}_2^{ee})$	0	15 _{0,-2}	$H^1(\widetilde{L}_2)$	0
20 _{+1,0}	$H^1(ilde{L}_1)$	0	20 _{-1,0}	$H^1(ilde{L}_1^ee)$	0
6 _{+1,-2}	$H^1(ilde{L}_1\otimes ilde{L}_2)$	0	6 _{-1,-2}	$H^1(ilde{L}_1^ee\otimes L_2)$	0
6 _{+1,+1}	$H^1(ilde{L}_1\otimes ilde{U}_2)$	72	6 _{-1,+1}	$H^1(ilde{L}_1^ee\otimes ilde{U}_2)$	90
6 _{+1,-1}	$H^1(ilde{L}_1\otimes ilde{U}_2^ee)$	0	6 _{-1,-1}	$H^1(ilde{L}_1^ee\otimes ilde{U}_2^ee)$	0
$\overline{6}_{+1,+2}$	$H^1(ilde{L}_1\otimes ilde{L}_2^ee)$	0	6 _{−1,+2}	$H^1(ilde{L}_1^ee\otimes ilde{L}_2^ee)$	2
1 _{0,0}	$H^1(ilde U_2\otimes ilde U_2^ee)$	99	1 _{0,-3}	$H^1(ilde{L}_2\otimes ilde{U}_2^ee)$	0
1 _{0,+3}	$H^1(ilde{L}_2^ee\otimes ilde{U}_2)$	98			

 $\label{eq:anticle} \mbox{Table}: \mbox{ Particle content of the } SU(6) \times U(1) \times U(1) \mbox{ theory} \leftrightarrow V = \tilde{L}_1 \oplus \tilde{L}_1^{\vee} \oplus \tilde{L}_2 \oplus \tilde{U}_2.$

・ロン ・日 ・ ・ 日 ・ ・ 日

Branch Structure

• Various branches. E.g. Search for breaking: $SU(6) \rightarrow SU(5)$ stable off the wall. $(L + L^{\vee} + U_3 \rightarrow V_5)$

$$\begin{split} D_{GS}^{U(1)} &\sim \frac{3}{16} \frac{\epsilon_{S} \epsilon_{R}^{2} \mu(\mathcal{L})}{\kappa_{4}^{2} \mathcal{V}} - \frac{1}{2} \left((-2) |\mathcal{C}_{-2,0}|^{2} + (+1)|\mathcal{C}_{+1,-5}|^{2} + (-1) |\mathcal{C}_{-1,-5}|^{2} + (-1) |\mathcal{C}_{-1,+5}|^{2} \right) \\ D_{SU(6)}^{U(1)} &\sim \frac{1}{2} \left((-5) |\mathcal{C}_{+1,-5}|^{2} + (-5) |\mathcal{C}_{-1,-5}|^{2} + (+5) |\mathcal{C}_{-1,+5}|^{2} \right) \end{split}$$

D-flat solns require μ(L) < 0 ⇒ One-sided stability chamber
Can show that this branch is described via

		,	G			г ^j					۸a						p	7	
1	1	0	0	0	0	-2	1	0	0	0	0	2	1	1	2	-1	-3	$^{-1}$	-2
0	0	1	1	1	1	-4	-1	1	1	1	1	1	2	2	2	-1	$^{-2}$	-4	-3
							-												(1)

• Shares the reducible (wall) locus $L+L^\vee+U_3$ with

$$0 \to L \to \mathcal{O}(0,1)^{\oplus 2} \to \mathcal{O}(1,1) \to 0$$

• $dim(\mathcal{M}_0) = dim(\mathcal{M}_1) = h^{1,1}(X) + h^{2,1}(X) + h^1(End_0(V)) = 2 + 86 + 338 =$

Image: A math a math

TS Dual and branches

• Again, search for a branch $SU(6) \rightarrow SU(5)$

$$\begin{split} D_{GS1}^{U(1)} &\sim \frac{3}{16} \frac{\epsilon_{S} \epsilon_{R}^{2} \mu(\mathcal{L}_{1})}{\kappa_{4}^{2} \mathcal{V}} - \frac{1}{2} \left((-2)|\mathcal{C}_{-2,0,0}|^{2} + (+1)|\mathcal{C}_{+1,+1,-5}|^{2} + (-1)|\mathcal{C}_{-1,+1,-5}|^{2} + (-1)|\mathcal{C}_{-1,+2,+5}|^{2} \right) \\ D_{GS2}^{U(1)} &\sim \frac{3}{16} \frac{\epsilon_{S} \epsilon_{R}^{2} \mu(\mathcal{L}_{2})}{\kappa_{4}^{2} \mathcal{V}} - \frac{1}{2} \left((+3)|\mathcal{C}_{0,+3,0}|^{2} + (+1)|\mathcal{C}_{+1,+1,-5}|^{2} + (+1)|\mathcal{C}_{-1,+1,-5}|^{2} + (+2)|\mathcal{C}_{-1,+2,+5}|^{2} \right) \\ D_{SU(6)}^{U(1)} &\sim \frac{1}{2} \left((-5)|\mathcal{C}_{+1,+1,-5}|^{2} + (-5)|\mathcal{C}_{-1,+1,-5}|^{2} + (+5)|\mathcal{C}_{-1,+2,+5}|^{2} \right) \end{split}$$

• Again, one such branch w/ $\mu(L_2) > 0$ and $\mu(L_1) < 0$

• Described via the new monad

			;	< _i				F	j				1	۱a						F	21
0	0	0	0	0	0	1	1	-1	$^{-1}$	0	0	0	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	-2	0	1	0	0	0	0	2	1	1	2	-1	-3	-1
0	0	1	1	1	1	0	0	-2	-2	-1	1	1	$^{-1}$	1	3	2	2	2	-1	-2	-4

Again $dim(\widetilde{\mathcal{M}}) = 426$ and SU(5) charged matter match exactly.

A B > A B >

• Even more exciting, we now have many examples where we can describe all branches via monads. In general, find commutative diagram:

$$egin{array}{ccc} V_1 & \stackrel{dual}{\longrightarrow} & \widetilde{V}_1 \ & & & \downarrow & \langle \widetilde{C}
angle \ & & & V_2 & \stackrel{dual}{\longrightarrow} & \widetilde{V}_2 \end{array}$$

• Only intriguing exceptions: In some cases stability wall in TS dual is located on the boundary of Kähler moduli space (i.e. some $t^i = 0$, but Vol(X) >> 0). Here effective theories difficult to compare. Perturbative/non-perturbative duality?...

(a)

F-term Example

- What about e.g.s w/ holomorphy obstructions? (i.e. F-term lifting)? For this we have to work a little harder...
- Consider the SU(2) bundle

×i						г ^j		ΡĮ		
1	1	0	0	0	0	-2	2	$^{-1}$	$^{-1}$	0
0	0	1	1	1	1	-4	0	2	2	-4

- Does not define a stable bundle for general choices of complex structure: Missing a map $F_1^a \in H^0(X, \mathcal{O}(-2, 4) = 0$ generically. However, line bundle cohomology can jump...
- Shown in (arXiv:1107.5076) that on a 53-dim. sublocus of CS moduli space, $h^0(X, \mathcal{O}(-2, 4) = 1. \Rightarrow dim(\mathcal{M}_1) = dim(\mathcal{M}_0) 33.$

• But... also proved that when $X \leftrightarrow \widetilde{X}$ connected via geometric transitions, dim(jumping locus)= $dim(\mathcal{CS}_{jump} \cap \mathcal{CS}_{shared})$

Target Space Dual theory of F-term example

			х	ï				F	i		ΡĮ		
0	0	0	0	0	0	1	1	$^{-1}$	$^{-1}$	0	1	0	$^{-1}$
1	1	0	0	0	0	0	0	$^{-1}$	$^{-1}$	2	-2	0	0
0	0	1	1	1	1	0	0	-2	-2	0	0	4	-4

- $\bullet\,$ Fortunately, new bundle \widetilde{V} now involves two jumping map components.
- $h^0(\widetilde{X}, \mathcal{O}(0, -2, 4)) = 1$ fixes 15 CS moduli
- $h^0(\widetilde{X}, \mathcal{O}(1, -2, 4)) = 1$ fixes 18 CS moduli
- Stability walls form chamber structure but do not lift moduli.
- In total $dim(\widetilde{\mathcal{M}}_1) = dim(\widetilde{\mathcal{M}}_0) 33$ as required!
- Charged matter spectra also agree.
- Fine print: easy e.g. but $c_2(V) \neq c_2(TX)$, need to add a spectator

×i						г ^j	۸ ^a				PI		
1	1	0	0	0	0	-2	0	0	2	2	-2	-2	
Ō	0	1	1	1	1	-4	1	1	1	1	-2	-2	

- In many non-trivial cases, we have found that not just the matter spectrum, but the effective potentials and vacuum spaces of the target space dual theories agree.
- We have found new evidence that target space duality may give hints towards a true (0, 2) string duality...
- Can we establish a deeper isomorphism between sigma models?
- Many open questions to explore in the GLSMs...
- Intriguing to carry this analysis further, calculate Yukawa couplings, etc.
- Links to other string dualities?

A D > A B > A B >