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(0, 2) GLSMs in a nutshell

Abelian, massive 2D theory
IR flow−→ (0, 2) CFT

U(1) gauge fields A(α), α = 1, . . . r

Chiral superfields: {Xi |i = 1, . . . d} charge (Q
(α)
i ), {Pl |l = 1, . . . γ}, charge

(−Mα
l ).

Fermi superfields: {Λa|a = 1 . . . , δ} charge N
(α)
a , {Γ(α)

j |j = 1 . . . c} charge

(−S
(α)
j ).

Gauge and gravitational anomaly cancellation:

δ∑
a=1

N(α)
a =

γ∑
l=1

M
(α)
l

d∑
i=1

Q
(α)
i

=
c∑

j=1

S
(α)
j

γ∑
l=1

M
(α)
l

M
(β)
l
−

δ∑
a=1

N(α)
a N(β)

a =
c∑

j=1

S
(α)
j

S
(β)
j
−

d∑
i=1

Q
(α)
i

Q
(β)
i

for all α, β = 1, ..., r .
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We encapsulate all this information in a table:

Xi Γj

Q
(1)
1 Q

(1)
2 . . . Q

(1)
d

Q
(2)
1 Q

(2)
2 . . . Q

(2)
d

...
...

. . .
...

Q
(r)
1 Q

(r)
2 . . . Q

(r)
d

−S
(1)
1 −S

(1)
2 . . . S

(1)
c

−S
(2)
1 −S

(2)
2 . . . S

(2)
c

...
...

. . .
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−S
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1 −S
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2 . . . S

(r)
c

Λa Pl

N
(1)
1 N
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(1)
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N
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1 N
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δ

...
...
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δ
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The GLSM potential

Superpotential: S =
∫

d2zdθ

[∑
j ΓjGj(Xi ) +

∑
l,a PlΛ

aF l
a(Xi )

]
Gj and F l

a are quasi-homogeneous polynomials w/ multi-degrees:

Gj

S1 S2 . . . Sc

Fa
l

M1 − N1 M1 − N2 . . . M1 − Nδ

M2 − N1 M2 − N2 . . . M2 − Nδ

.

.

.

.

.

.

.
.
.

.

.

.

Mγ − N1 Mγ − N2 . . . Mγ − Nδ

F-term: VF =
∑

j

∣∣Gj(xi )
∣∣2 +

∑
a

∣∣∑
l plF

l
a(xi )

∣∣2
D-term: VD =

∑r
α=1

(∑d
i=1 Q

(α)
i |xi |2 −

∑γ
l=1 M

(α)
l |pl |2 − ξ(α)

)2

Transversality condition: F l
a(xi ) = 0 only when xi = 0 ∀i

FI Parameter (ξ(α) ∈ R) controls the phases
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E.g. ξ > 0 ⇒ Gj(Xi ) = 0 and 〈P〉 = 0 ⇒ Geometric phase.

Geometry: (X ,V ) with X a CY and bundle described via a monad:

0→ O⊕rVM
⊗E a

i−−→ ⊕δa=1OM(Na)
⊗F l

a−−→ ⊕γl=1OM(Ml)→ 0

with V =
ker(F l

a)
im(E a

i )

E.g. ξ < 0 ⇒ 〈p〉 6= 0 ⇒ Non-geometric phase

E.g. Landau-Ginzburg orbifold w. superpotential:

W(Xi ,Λ
a, Γi ) =

∑
j

ΓjGj(Xi ) +
∑
a

ΛaFa(Xi )

With multiple U(1)s, hybrid phases.
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Target space duality

Observation (Distler, Kachru): In LG-phase, G and F on equal footing.

Could be interchanged... Algorithm:

Find phase with one 〈pl〉 6= 0 for some l .

Rescale: Λ̃ai := Γji

〈p1〉 , Γ̃ji := 〈p1〉Λai ∀i = 1, . . . k s.t.
∑

i ||Gji || =
∑

i ||Fai
1||

Move to a region in bundle moduli space where Λai appear only with P1

∀i ⇒ F l
ai = 0 ∀l 6= 1, i = 1, . . . k .

Leave non-geometric phase and define new Fermi superfields s.t.

||Λ̃ai || = ||Γji || − ||P1|| and ||Γ̃ji || = ||Λai ||+ ||P1||. item Return to a generic

pt. in moduli space to define new TS dual (0, 2) GLSM w/ new geometric

phase: (X̃ , Ṽ ).
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Example

xi Γj Λa pl

0 0 0 1 1 1 1

1 1 1 2 2 2 0

−2 −2

−4 −5

1 0 0 2

0 1 1 6

−3

−8

SU(3) bundle with

dim(M0) = h1,1(X ) + h2,1(X ) + h1(End0(V )) = 2 + 68 + 322 = 392,

h∗(V ) = (0, 120, 0, 0) (no. of 27’s)

Here ||G1|| = (2, 4), ||G2|| = (2, 5), ||F 1
1 || = (2, 8), ||F 1

2 || = (3, 7),

||F 1
3 || = (3, 7), ||F 1

4 || = (1, 2)

Sum of third and fourth F equals sum of two hypersurface degrees.

Redefine: Γ̃1 = 〈p1〉Λ3, Γ̃2 = 〈p1〉Λ4, Λ̃3 = Γ1

〈p1〉 , Λ̃4 = Γ2

〈p1〉 , G̃ = F 1
3 ,

G̃2 = F 1
4 , F̃ 1

3 = G1, F̃ 1
4 = G2

Superpotential: W = Γ̃1G̃1 + Γ̃2G̃2 + 〈p1〉(Λ̃3F̃ 1
3 + Λ̃4F̃ 1

4 + Λ1F 1
1 + Λ2F 1

2 )
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Example

||G̃1|| = (3, 7), ||G̃2|| = (1, 2), ||F̃ 1
3 || = (2, 4), ||F 1

4 || = (2, 5),

||Γ̃1|| = (−3,−7), ||Γ̃2|| = (−1,−2) ||Λ̃3|| = (1, 4), ||Λ̃4|| = (1, 3).

Leads to new geometry (X̃ , Ṽ )

xi Γj Λa pl

0 0 0 1 1 1

1 1 1 2 2 0

−3

−7

1 0 1 1

0 1 4 3

−3

−8

dim(M̃0) = h1,1(X̃ ) + h2,1(X̃ ) + h1(End0(Ṽ )) = 2 + 95 + 295 = 392,

h∗(Ṽ ) = (0, 120, 0, 0)

Here h1,1 stays fixed, complex structure and bundle moduli interchange.

More general mixing possible...
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Increasing no. of U(1)’s

Can find an alternate description of X to open up more possibilities:

Add a new coord y1 with multi-degree B and a new hypersurface also of

degree B

Perform previous procedure (e.g. ||B|| = ||F 1
1 ||+ ||F 1

2 || − 1)

Resolve singularities (Distler, Greene, Morrison) by formally adding a P1

(another coord y2)

Set constraint GB = y1 = 0 to eliminate y1. Use additional U(1) and

D-term to fix y2 to a real constant.↔ X× a single pt.

Leads to (X̃ , Ṽ ) with higher h1,1

In general, all numbers of moduli mixed.

x1 .. xd y1 y2 Γ1 .. Γc ΓB Λ1 Λ1 .. Λδ p1 p2 .. pγ

0 .. 0 1 1 0 .. 0 -1 0 0 .. 0 −1 0 .. 0

Q1 .. Qd B 0 −S1 .. −Sc −B N1 N2 .. Nδ −M1 −M2 .. −Mγ
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End up with new geometry:

x1 . . xd y1 y2 Γ̃1 .. Γc Γ̃B Λ̃1 Λ̃2 .. p1 p2 ..

0 .. 0 1 1 −1 .. 0 -1 1 0 .. −1 0 ..

Q1 .. Qd B 0 −(M1 − N1) .. −Sc −(M1 − N2) 0 M2 − B .. −M1 −M2 ..

Can choose B (e.g. B = 0) to make this a conifold transition between

X ↔ X̃ (“Transgression”, Candelas, et al).

Can repeat this many times. In general all moduli mixed (and any one

can be held fixed).

What to make of this TS duality?

Two possibilities

1 Two distinct theories, connected in moduli space (e.g. like conifold

transitions in Type II theories)

2 A true duality (i.e. isomorphism) of target space theories
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The question...

In 2011, Blumenhagen + Rahn performed a landscape scan. Tested

duality by counting states:

h1,1(X ) + h2,1(X ) + h1(End0(V )) = h1,1(X̃ ) + h2,1(X̃ ) + h1(End0(Ṽ ))

and charged matter in ∼ 80, 000 examples. Agreement in nearly all cases.

Question: Can we test this duality (even in the geometric, perturbative

regime) in more detail?

Recall, these are N = 1 4D theories. Want more than dim(M0)... ⇒

Moduli can be obstructed!

Can we compare the effective potential and vacuum space of the chain of

dual theories?

Must engineer examples with interesting/calculable potentials...
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Our starting point...

Thanks to recent progress (LA, Gray, Lukas, Ovrut) know more about

how to do this...

Conditions for N = 1 Supersymmetry in 4D: Hermitian-Yang Mills Eqns

Fab = Fab = g abFba = 0

g abFba = 0 ⇔ Donaldson-Uhlenbeck-Yau Thm: V is slope, poly-stable.

Fab = Fab = 0: V is holomorphic.

Stability ⇔ 4D D-terms

Holomorphy ⇔ 4D F-terms

Can we test TS duality for examples with non-trivial moduli obstructions?

Will choose simple e.g.s: Ordinary CICYs, 0→ V → B → C → 0,

c2(TX ) = c2(V )
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Stability

The slope, µ(V ), of a vector bundle is

µ(V ) ≡ 1

rk(V )

∫
X

c1(V ) ∧ ω ∧ ω

where ω = tkωk is the Kahler form on X (ωk a basis for H1,1(X )).

V is Stable if for every sub-sheaf, F ⊂ V , with 0 < rk(F) < rk(V ),

µ(F) < µ(V )

V is Poly-stable if V =
⊕

i Vi , Vi stable such that µ(V ) = µ(Vi ) ∀i

Conservation of Misery → Tough to find sub-sheaves.
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Monad E.g. CY 3-fold, X =
[

P1

P3

∣∣∣ 2

4

]
, with h1,1 = 2.

V an SU(3) bundle defined by

0→ V → OX (1, 0)⊕OX (1,−1)⊕OX (0, 1)⊕2 f−→ OX (2, 1)→ 0

which is destabilized in part of the Kähler cone by the rank 2 sub-bundle

0→ F → OX (1, 0)⊕OX (0, 1)⊕2 → OX (2, 1)→ 0 with c1(F) = −ω1 + ω2.

UNSTABLE

S

S

2

2

c (L )=(−1,1)
1

1

1

1/2

STABLE
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Poly-stable locus

On a line (in general a hyperplane) in Kähler moduli space, the sub-sheaf

F becomes important

Can describe V in terms of this sub-sheaf as 0→ F → V → V /F → 0

Space of such extensions given by Ext1((V /F),F) = H1(X ,F ⊗ (V /F)∨),

where the origin of this group is a locus in the moduli space of V for

which V = F ⊕ V /F , with c1(F) = −c1(V /F)

On the line with µ(F) = 0, for SUSY to exist, need

V =
⊕

i Vi = F ⊕ V /F to have a poly-stable bundle.

This means the structure group changes!

SU(3)→ S [U(2)× U(1)]. Locally S [U(2)× U(1)] ≈ SU(2)× U(1)

Enhancement of symmetry → E6 × U(1). New U(1) gauge field in the

visible 4d theory. (Sharpe)
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E.g. SU(3)→ S [U(2)× U(1)].

The enhanced U(1) is Green-Schwarz massive.

Matter fields and “moduli” are now charged under this U(1).

Locally, E8 ⊃ E6 × SU(2)× U(1)

248→ (1, 1)0 + (1, 2)−3/2 + (1, 2)3/2 + (1, 3)0 + (78, 1)0 + (27, 1)1 + (27, 2)−1/2 +

(2̄7, 1)−1 + (2̄7, 2)1/2

Bundle moduli decompose as

H1(V ⊗ V∨)→

 H1(F ⊗ F∨) + H1(F ⊗K∨) + H1(K ⊗F∨)

(1, 3)0 + (1, 2)−3/2 + (1, 2)3/2

E6 Matter: H1(V )→

 H1(K) + H1(F)

(27, 1)1 + (27, 2)−1/2
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The complexified Kähler moduli, T k = tk + 2iχk , transform with a shift

symmetry through the axion, χk

U(1) D-term contribution to the 4d effective potential (Sharpe, Lukas,

Stelle, Blumenhagen, Weigand, Honecker,. . . ).

DU(1) ∼ µ(F)

Vol(X )
−
∑
M,N̄

QMGMN̄CM C̄ N̄

with (FI)-term ∼ µ(F) -the slope of the relevant sub-bundle F , CM are

U(1) charged fields.

This D-term potential is independent of complex structure moduli for all

anomaly free and N = 1 SUSY theories.

Stability walls can lead to transitions between bundles (S-equivalence

classes, etc).

Kähler cone substructure can lead to constraints on phenomenology:

Yukawa textures, etc.
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Holomorphic Vector bundles

V holomorphic if Fab = Fāb̄ = 0

Suppose we begin with a holomorphic bundle and then vary the complex

structure? Must a bundle stay holomorphic for any variation

δzI vI ∈ h2,1(X )? ⇒ No

0→ V ⊗ V∨ → Q π→ TX → 0 is known as the Atiyah sequence.

The long exact sequence in cohomology gives us

0→ H1(V ⊗ V∨)→ H1(Q)
dπ→ H1(TX )

α→ H2(V ⊗ V∨)→ . . .

If the map dπ is surjective then H1(Q) = H1(V ⊗ V∨)⊕ H1(TX )

But dπ not surjective in general! H1(Q) = H1(V ⊗ V∨)⊕ Im(dπ)

dπ difficult to define, but by exactness, Im(dπ) = Ker(α) where

α = [F 1,1] ∈ H1(V ⊗ V∨ ⊗ TX∨) is the Atiyah Class
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Deformation Theory

There are three objects in deformation theory that we need

Def (X ): Deformations of X as a complex manifold. Infinitesimal defs

parameterized by the vector space H1(TX ) = H2,1(X ). These are the

complex structure deformations of X .

Def (V ): The deformation space of V (changes in connection, δA) for fixed

C.S. moduli. Infinitesimal defs measured by H1(End(V )) = H1(V ⊗ V∨).

These define the bundle moduli of V .

Def (V ,X ): Simultaneous holomorphic deformations of V and X . The

tangent space is H1(X ,Q) where

0→ V ⊗ V∨ → Q π→ TX → 0

If P is the total space of the bundle, Q = r∗TP.

H1(X ,Q) are the actual complex moduli of a heterotic theory
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GVW Superpotential and F-terms

For the 4d Theory: We have Gukov-Vafa-Witten superpotential

W =
∫
X

Ω ∧ H where H = dB − 3α′√
2

(
ω3YM − ω3L

)
In Minkowski vacuum (with W = 0), F-terms:

FCi = ∂W
∂Ci

= − 3α′√
2

∫
X

Ω ∧ ∂ω3YM

∂Ci

Dimensional Reduction Anzatz: Aµ = A
(0)
µ + δAµ + ω̄i

µδCi + ωi
µδC̄i

FCi =

∫
X

εāc̄ b̄εabcΩ
(0)
abc2ω̄xi

c̄ tr(TxTy )
(
δzI v c

I [āF
(0)y

|c|b̄]
+ 2D

(0)
[ā δAy

b̄]

)
Computationally: Ker(α): Free C.S. moduli. Im(α): lifted C.S. moduli.

Superpotential observations in lit. since 80’s. Hard part is engineering

calculable examples.

Idea: Build bundles where “ingredients” crucially depend on complex

structure...
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Our present program...

Build monad bundles with F-term and D-term obstructions

Analyze the vacuum space

Systematically construct all TS dual geometries

Compare...

Note: Counting is easiest... so begin w/ examples that lift, rather than

just constrain moduli

Caveat: Many interesting questions to ask of the GLSM, for this talk I

will focus solely on comparing the target space theories generated in the

geometric phases.
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D-term Example

xi Γj Λa pl

1 1 0 0 0 0

0 0 1 1 1 1

−2

−4

1 −1 0 0 2 1 1 2

−1 1 1 1 1 2 2 2

−3 −1 −2

−2 −4 −3

with initial total moduli count

dim(M0) = h1,1(X ) + h2,1(X ) + h1(X ,End0(V )) = 2 + 86 + 340 = 428

What is the effective target space theory in the geometric phase?

Naively: rk(V ) = 5, c1(V ) = 0 ⇒ SU(5) 4D theory.

Not so fast though...Mixed positive/negative entries in Λa indicate

sub-sheaves.

In fact, V stable only on a ray in Kähler moduli space t2 = 4t1.

Only supersymmetric configuration of V : V → U3 ⊕ L⊕ L∨ w/

L = O(1,−1).
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Non-Abelian Enhancement: Structure group is not SU(5), rather

S [U(1)× U(1)]× SU(3) ⊂ E8 ⇒ SU(6)× U(1), with U(1) symmetry

Green-Schwarz massive.

Field Cohom. Multiplicity Field Cohom. Multiplicity

1+2 H1(L⊗ L) 0 1−2 H1(L∨ ⊗ L∨) 10

150 H1(U3
∨) 0 150 H1(U3) 80

20+1 H1(L) 0 20−1 H1(L∨) 0

6+1 H1(L⊗ U3) 72 6−1 H1(L∨ ⊗ U3) 90

6+1 H1(L⊗ U3
∨) 0 6−1 H1(L∨ ⊗ U3

∨) 2

10 H1(U3 ⊗ U3
∨) 166

Table : Particle content of the SU(6)× U(1) theory associated to the bundle along its

reducible and poly-stable locus V = O(−1, 1)⊕O(1,−1)⊕U3 (i.e. on the stability wall).
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Features of interest

Non-trivial D-term lifts one Kähler modulus. Reduction in moduli

dim(M1) = dim(M0)− 1 = 427

Bundle forced to locus w/ non-Abelian symmetry enhancement

From the stability wall, can explore branch structure into nearby

geometries.

How much of this is visible in the TS duals?

In this case can construct a chain of 17 TS dual geometries w/

conifold-type “splits” → h1,1 + 1. What do we get?...
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TS dual of D-term e.g.

One example:

xi Γj Λa pl

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0

−1 −1

−2 0

−2 −2

0 0 1 0 0 0 0 0

1 −1 0 0 2 1 1 2

−1 1 −1 1 3 2 2 2

0 0 −1

−3 −1 −2

−2 −4 −3

Questions:

1 Does (X̃ , Ṽ ) give rise to a stability wall?

2 What is dim(M̃0)? Is dim(M̃1) reduced by the same amount?

3 Does the structure group of Ṽ reduce as well, leading to a 4-dimensional

non-Abelian enhancement of symmetry?

4 Do the charged matter spectra of the two theories match?

5 Does the vacuum branch structure (i.e. local deformation space)

correspond?
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TS Dual

First pass yields a discrepancy...

dim(M̃0) = h1,1(X̃ ) + h2,1(X̃ ) + h1(X ,End0(Ṽ )) = 3 + 55 + 371 = 429

However, this isn’t quite the right count. Three de-stabilizing sub-sheaves

for Ṽ . Stability condition on the wall reduces free Kähler moduli by 2

(two D-terms). ⇒ dim(M̃1) = 427. Agreement!

Once again, Ṽ is forced to be reducible: Ṽ → (L̃1 ⊕ L̃∨1 )⊕ (L̃2 ⊕ Ũ2)

Structure group is S [U(1)× U(1)]× S [U(1)× U(2)] ⇒

SU(6)× U(1)× U(1) w/ both U(1)s GS massive.

First three questions manifestly answered in the positive!
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Field Cohom. Multiplicity Field Cohom. Multiplicity

1+2,0 H1(L̃1 ⊗ L̃1) 0 1−2,0 H1(L̃∨1 ⊗ L̃∨1 ) 10

150,−1 H1(Ũ∨2 ) 0 150,+1 H1(Ũ2) 80

150,+2 H1(L̃∨2 ) 0 150,−2 H1(L̃2) 0

20+1,0 H1(L̃1) 0 20−1,0 H1(L̃∨1 ) 0

6+1,−2 H1(L̃1 ⊗ L̃2) 0 6−1,−2 H1(L̃∨1 ⊗ L2) 0

6+1,+1 H1(L̃1 ⊗ Ũ2) 72 6−1,+1 H1(L̃∨1 ⊗ Ũ2) 90

6+1,−1 H1(L̃1 ⊗ Ũ∨2 ) 0 6−1,−1 H1(L̃∨1 ⊗ Ũ∨2 ) 0

6+1,+2 H1(L̃1 ⊗ L̃∨2 ) 0 6−1,+2 H1(L̃∨1 ⊗ L̃∨2 ) 2

10,0 H1(Ũ2 ⊗ Ũ∨2 ) 99 10,−3 H1(L̃2 ⊗ Ũ∨2 ) 0

10,+3 H1(L̃∨2 ⊗ Ũ2) 98

Table : Particle content of the SU(6)× U(1)× U(1) theory ↔ V = L̃1 ⊕ L̃∨1 ⊕ L̃2 ⊕ Ũ2.
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Branch Structure

Various branches. E.g. Search for breaking: SU(6)→ SU(5) stable off the
wall. (L + L∨ + U3 → V5)

D
U(1)
GS ∼

3

16

εSεR
2µ(L)

κ4
2V

−
1

2

(
(−2)|C−2,0|2 + (+1)|C+1,−5|2 + (−1)|C−1,−5|2 + (−1)|C−1,+5|2

)
D

U(1)

SU(6)
∼

1

2

(
(−5)|C+1,−5|2 + (−5)|C−1,−5|2 + (+5)|C−1,+5|2

)
D-flat solns require µ(L) < 0 ⇒ One-sided stability chamber
Can show that this branch is described via

xi Γj Λa pl

1 1 0 0 0 0

0 0 1 1 1 1

−2

−4

1 0 0 0 0 2 1 1 2

−1 1 1 1 1 1 2 2 2

−1 −3 −1 −2

−1 −2 −4 −3

(1)

Shares the reducible (wall) locus L + L∨ + U3 with

0→ L→ O(0, 1)⊕2 → O(1, 1)→ 0

dim(M0) = dim(M1) = h1,1(X ) + h2,1(X ) + h1(End0(V )) = 2 + 86 + 338 =

426
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TS Dual and branches

Again, search for a branch SU(6)→ SU(5)

D
U(1)
GS1

∼
3

16

εS εR
2µ(L1)

κ4
2V

−
1

2

(
(−2)|C−2,0,0|

2 + (+1)|C+1,+1,−5|
2 + (−1)|C−1,+1,−5|

2 + (−1)|C−1,+2,+5|
2
)

D
U(1)
GS2

∼
3

16

εS εR
2µ(L2)

κ4
2V

−
1

2

(
(+3)|C0,+3,0|

2 + (+1)|C+1,+1,−5|
2 + (+1)|C−1,+1,−5|

2 + (+2)|C−1,+2,+5|
2
)

D
U(1)
SU(6)

∼
1

2

(
(−5)|C+1,+1,−5|

2 + (−5)|C−1,+1,−5|
2 + (+5)|C−1,+2,+5|

2
)

Again, one such branch w/ µ(L2) > 0 and µ(L1) < 0

Described via the new monad

xi Γj Λa pl

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0

−1 −1

−2 0

−2 −2

0 0 0 1 0 0 0 0 0

1 0 0 0 0 2 1 1 2

−1 1 1 −1 1 3 2 2 2

0 0 0 −1

−1 −3 −1 −2

−1 −2 −4 −3

Again dim(M̃) = 426 and SU(5) charged matter match exactly.
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Branch Structure

Even more exciting, we now have many examples where we can describe

all branches via monads. In general, find commutative diagram:

V1
dual−→ Ṽ1

〈C 〉 ↓ ↓ 〈C̃ 〉

V2
dual−→ Ṽ2

Only intriguing exceptions: In some cases stability wall in TS dual is

located on the boundary of Kähler moduli space (i.e. some t i = 0, but

Vol(X ) >> 0). Here effective theories difficult to compare.

Perturbative/non-perturbative duality?...
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F-term Example

What about e.g.s w/ holomorphy obstructions? (i.e. F-term lifting)? For

this we have to work a little harder...

Consider the SU(2) bundle
xi Γj Λa pl

1 1 0 0 0 0

0 0 1 1 1 1

−2

−4

2 −1 −1

0 2 2

0

−4

Does not define a stable bundle for general choices of complex structure:

Missing a map F a
1 ∈ H0(X ,O(−2, 4) = 0 generically. However, line bundle

cohomology can jump...

Shown in (arXiv:1107.5076) that on a 53-dim. sublocus of CS moduli

space, h0(X ,O(−2, 4) = 1. ⇒ dim(M1) = dim(M0)− 33.

But... also proved that when X ↔ X̃ connected via geometric transitions,

dim(jumping locus)= dim(CS jump ∩ CSshared)
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Target Space Dual theory of F-term example

xi Γj Λa pl

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0

−1 −1

−1 −1

−2 −2

0 1 0

2 −2 0

0 0 4

−1

0

−4

Fortunately, new bundle Ṽ now involves two jumping map components.

h0(X̃ ,O(0,−2, 4)) = 1 fixes 15 CS moduli

h0(X̃ ,O(1,−2, 4)) = 1 fixes 18 CS moduli

Stability walls form chamber structure but do not lift moduli.

In total dim(M̃1) = dim(M̃0)− 33 as required!

Charged matter spectra also agree.

Fine print: easy e.g. but c2(V ) 6= c2(TX ), need to add a spectator
xi Γj Λa pl

1 1 0 0 0 0

0 0 1 1 1 1

−2

−4

0 0 2 2

1 1 1 1

−2 −2

−2 −2
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Conclusions and Future work

In many non-trivial cases, we have found that not just the matter

spectrum, but the effective potentials and vacuum spaces of the target

space dual theories agree.

We have found new evidence that target space duality may give hints

towards a true (0, 2) string duality...

Can we establish a deeper isomorphism between sigma models?

Many open questions to explore in the GLSMs...

Intriguing to carry this analysis further, calculate Yukawa couplings, etc.

Links to other string dualities?
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