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2) GLSMs in a nutshell

@ Abelian, massive 2D theory TR fgw

— (0,2) CFT

o U(1) gauge fields Al®) o =1,...r

e Chiral superfields: {X;|i =1,...d} charge ( ) {P)|l =1,...~}, charge
(=MP).

o Fermi superfields: {A°]a=1...,d} charge N§“), {FJ(.a)|j =1...c} charge
(~5)).

e Gauge and gravitational anomaly cancellation:

) Y d

> M) =3 e SEREIES

a=1 =1 i=1 j=1
i} ) c d

() py(B) B)  _ (o) 5(B) () o(B)
I:ZIM/ M= = SN - j:15/ 5 7[_22104‘ Qi

forall a,8=1,...,r
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We encapsulate all this information in a table:

X; Kl
QM QM .o || —s®M s st
o QO . QP | _s® s . o
QY @ ..oy || —si? s sY
N P,
N{I) N(l) N(gl) _Ml(l) _M2(1) _M’(Yl)
N£2) Néz) N§2) _ Ml(z) _ M2(2) _ M'(y2)
N{’) N(r) N(g’) 7’\/]9) 7’\/]9) 7MA(/’)
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The GLSM potential

o Superpotential: S = [ d?zdf| >,V G;(X;) + Y, , PN F(Xi)

o Gj and F! are quasi-homogeneous polynomials w/ multi-degrees:

G
S, S ... S
F!
My — Ny My — Ny ... Mp—Ng
My — Ny My —Ny ... My—Ng
My — Ny My —Np ... My —Ng

F-term: Vi = 33, |G(x0)|” + 22, | X, pFL0a)

2
D-term: Vp =37, (Z?—l Qi(a)|xi|2 -2 /w/(a)‘l7l|2 - f(a)>

o Transversality condition: F!(x;) = 0 only when x; = 0 Vi

FI Parameter (£(*) € R) controls the phases
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E.g. £ >0= Gj(X;) =0 and (P) = 0 = Geometric phase.

Geometry: (X, V) with X a CY and bundle described via a monad:

1
0 0% E5, 93 00(N,) 25 97, 0u(M) — 0

ker(F!)

with V = m(ES)

E.g. £ <0 = (p) # 0 = Non-geometric phase

E.g. Landau-Ginzburg orbifold w. superpotential:

W(X;, N2, T ZFJG(X JFZ/\a

With multiple U(1)s, hybrid phases.
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Target space duality

@ Observation (Distler, Kachru): In LG-phase, G and F on equal footing.
Could be interchanged... Algorithm:

e Find phase with one (p;) # 0 for some /.

o Rescale: A% = L5 = (p)A% Vi =1, kst 30, (1Gyl| = X, 1[Fo |

@ Move to a region in bundle moduli space where A% appear only with P;
Vi= Fl =0VI#1,i=1,...k

@ Leave non-geometric phase and define new Fermi superfields s.t.

[IA%]] = [[F7]] = [|Py]] and ||| = ||A%

| +||P1]]. item Return to a generic
pt. in moduli space to define new TS dual (0,2) GLSM w/ new geometric
phase: (X, V).
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Example

r A2 p

1 1 1 2 2 2 0 —4 —5 0 1 1 6 —8

e SU(3) bundle with
dim(Mg) = hY1(X) + h?1(X) + kY (Endo(V)) = 2 + 68 + 322 = 392,
h*(V) = (0,120,0,0) (no. of 27’s)
o Here [|Gy]| = (2,4), ||Go|| = (2,5), [|F{]| = (2,8), [|F;]| = (3,7),
IF3 1= (3.7), [IFill = (1.2)
@ Sum of third and fourth F equals sum of two hypersurface degrees.
~ ~ ~ 1 ~ 2 ~
e Redefine: 't = (p;)A3, 2 = (p))A*, A3 = (;FTM A = ﬁ, G = F},
G=F} F} =G, F} =6
o Superpotential: W = Gy + [2Gy + (p1)(N3F} + AM*F} + ALFL + A2F))
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Example

o [|Gi]| = (3,7), |Gl = (1,2), |IF}[| = (2,4), [IF]| = (2,5),
1P = (=3,=7), [IF?] = (=1,=2) [|A%]| = (1,4), [|A*]| = (1,3).
o Leads to new geometry (X, V)

x; r A2 P

0 0 0 1 1 1 -3 1 0 1 1 -3
1 1 1 2 2 0 -7 0 1 4 3 —8

o dim(Mo) = h1(X) + h*1(X) + h'(Endo(V)) = 2 + 95 + 295 = 392,

h*(V) = (0,120,0,0)
o Here h! stays fixed, complex structure and bundle moduli interchange.

@ More general mixing possible...
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Increasing no. of U(1)'s

Can find an alternate description of X to open up more possibilities:

o Add a new coord y; with multi-degree B and a new hypersurface also of
degree B

@ Perform previous procedure (e.g. ||B|| = ||FL|| + ||F2|] — 1)

@ Resolve singularities (Distler, Greene, Morrison) by formally adding a P!
(another coord y»)

@ Set constraint GB = y; = 0 to eliminate y;. Use additional U(1) and
D-term to fix y» to a real constant.<> X X a single pt.

e Leads to (X, V) with higher A%

@ In general, all numbers of moduli mixed.

x . X4 v o» rl . re r8 Al Al .. X p1 Py . Py
0 . 0 1 1 0 . 0 -1 0 0 . 0 -1 0 . 0
Qq .. Q B o | -8 .. —-s. -8B Ny Ny . Ny | =My =My .. —My
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End up with new geometry:

xq . X4 y1 ¥2 il . re B Al A2 . P1 P
0 .. 0 1 1 -1 . 0 -1 1 0 . —1 0
@ .. Q B 0 | —M—Np) .. —S5 —Mp—-Np) |[ 0 My—B .| -M M

e Can choose B (e.g. B =0) to make this a conifold transition between
X & X (“Transgression”, Candelas, et al).
o Can repeat this many times. In general all moduli mixed (and any one
can be held fixed).
e What to make of this TS duality?
@ Two possibilities
@ Two distinct theories, connected in moduli space (e.g. like conifold

transitions in Type II theories)

@ A true duality (i.e. isomorphism) of target space theories
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The question...

@ In 2011, Blumenhagen + Rahn performed a landscape scan. Tested
duality by counting states:

RYY(X) + R2H(X) + hH(Endg(V)) = AH(X) + h*1(X) + h'(Endo(V))

and charged matter in ~ 80,000 examples. Agreement in nearly all cases.

@ Question: Can we test this duality (even in the geometric, perturbative
regime) in more detail?

@ Recall, these are N =1 4D theories. Want more than dim(M,)... =
Moduli can be obstructed!

o Can we compare the effective potential and vacuum space of the chain of
dual theories?

@ Must engineer examples with interesting/calculable potentials...
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Our starting point...

e Thanks to recent progress (LA, Gray, Lukas, Ovrut) know more about

how to do this...

o Conditions for N = 1 Supersymmetry in 4D: Hermitian-Yang Mills Eqns
Fab = Fyp = °°F5, = 0

° gaEFE . = 0 & Donaldson-Uhlenbeck-Yau Thm: V is slope, poly-stable.

e F,, = F;; = 0: V is holomorphic.

o Stability < 4D D-terms

e Holomorphy < 4D F-terms

o Can we test TS duality for examples with non-trivial moduli obstructions?

@ Will choose simple e.g.s: Ordinary CICYs, 0 -V — B — C — 0,
a(TX) = (V)
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Stability

@ The slope, u(V), of a vector bundle is

w(V) = mfxcl(V)/\w/\w

where w = thwy is the Kahler form on X (wx a basis for H1(X)).
e V is Stable if for every sub-sheaf, 7 C V, with 0 < rk(F) < rk(V),
p(F) < (V)
e V is Poly-stable if V = &P, V;, V; stable such that p(V) = p(V;) Vi

@ Conservation of Misery — Tough to find sub-sheaves.
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1

o Monad E.g. CY 3-fold, X = [ . ’ : ] with AL =2,

e V an SU(3) bundle defined by
0= V = Ox(1,0) ® Ox(1,—1) @ Ox(0,1)2 -5 0x(2,1) = 0
which is destabilized in part of the Kahler cone by the rank 2 sub-bundle
0= F = Ox(1,0) @ 0x(0,1)%2 — Ox(2,1) — 0 with ci(F) = —w; + ws.

F UNSTABLE
S,

1

\5\ STABLE

172

e Ly=(-1.1)

N
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Poly-stable locus

@ On a line (in general a hyperplane) in Kéhler moduli space, the sub-sheaf
F becomes important

@ Can describe V in terms of this sub-sheafas 0 - F - V — V/F =0

@ Space of such extensions given by Ext!((V/F),F) = HY(X,F @ (V/F)V),
where the origin of this group is a locus in the moduli space of V for
which V = F @ V/F, with ¢(F) = —ca(V/F)

@ On the line with p(F) = 0, for SUSY to exist, need
V=@, Vi=Fa& V/F to have a poly-stable bundle.

@ This means the structure group changes!
SU(3) — S[U(2) x U(1)]. Locally S[U(2) x U(1)] = SU(2) x U(1)

e Enhancement of symmetry — Eg x U(1). New U(1) gauge field in the
visible 4d theory. (Sharpe)
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e E.g. SU(3) — S[U(2) x U(1)].

@ The enhanced U(1) is Green-Schwarz massive.

e Matter fields and “moduli” are now charged under this U(1).
Locally, Eg D Es x SU(2) x U(1)
248 — (1,1)0 + (1,2)_3/2 + (1,2)3/2 + (1,3)0 + (78, 1)o + (27, 1)1 + (27,2) _1 /2 +
(27,1)-1 + (27,2)1)2

@ Bundle moduli decompose as

H(F @ FY)+ H(F o KY) + H{(K @ FY)

(1,3)o + (1,2)=32 +  (1,2)3

HY(K) + H(F)

(27, 1)1+ (27,2) 1,2

HY(V & VY) —

e Eg Matter: HY{(V) —
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e The complexified K&hler moduli, T% = t¥ + 2ix*, transform with a shift
symmetry through the axion, y*
e U(1) D-term contribution to the 4d effective potential (Sharpe, Lukas,

Stelle, Blumenhagen, Weigand, Honecker,. .. ).

) M,N

Vol (X

with (FI)-term ~ u(F) -the slope of the relevant sub-bundle F, CM are
U(1) charged fields.

@ This D-term potential is independent of complex structure moduli for all
anomaly free and N =1 SUSY theories.

o Stability walls can lead to transitions between bundles (S-equivalence
classes, etc).

e Kahler cone substructure can lead to constraints on phenomenology:

Yukawa textures, etc.

Lara Anderson (VT) New Evidence for (0, 2) Target Space Duality Paris- May 30th, '16 17 / 33



Holomorphic Vector bundles

V holomorphic if F,, = F35 =0

Suppose we begin with a holomorphic bundle and then vary the complex
structure? Must a bundle stay holomorphic for any variation

83'vi € R1(X)? = No

0> V®VY—= Q5 TX — 0is known as the Atiyah sequence.

The long exact sequence in cohomology gives us

0= H(Ve V)= HY(Q) B HY(TX) S HA (Ve VY) — ...
If the map dr is surjective then H(Q) = HY(V @ VV) & H}(TX)
But dm not surjective in general! H}(Q) = HY(V @ VV) @ Im(dr)

dr difficult to define, but by exactness, Im(dn) = Ker(a) where
a=[F e H(V ® VY ® TXV) is the Atiyah Class
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Deformation Theory

There are three objects in deformation theory that we need

@ Def(X): Deformations of X as a complex manifold. Infinitesimal defs
parameterized by the vector space H'(TX) = H?1(X). These are the
complex structure deformations of X.

@ Def(V): The deformation space of V (changes in connection, 6A) for fixed
C.S. moduli. Infinitesimal defs measured by H*(End(V)) = HY(V @ VV).
These define the bundle moduli of V.

@ Def(V,X): Simultaneous holomorphic deformations of V and X. The
tangent space is H'(X, Q) where

0->VeVY 505 TX—0

If P is the total space of the bundle, Q@ = r, TP.

e HY(X, Q) are the actual complex moduli of a heterotie theory
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GVW Superpotential and F-terms

e For the 4d Theory: We have Gukov-Vafa-Witten superpotential

W = [, QA H where H=dB — }(3YM—w3L)

o In Minkowski vacuum (with W = 0), F-terms:

FCf:ac* fo/\aw

3YM

o Dimensional Reduction Anzatz: A, = ALO) +0A, + @L(SC,- + wLéC-

Fe = / beabeQl) 202 tr( T T,) (35 v, FO% + 2D 5% )
X
e Computationally: Ker(a): Free C.S. moduli. Im(a): lifted C.S. moduli.

@ Superpotential observations in lit. since 80’s. Hard part is engineering
calculable examples.
@ Idea: Build bundles where “ingredients” crucially depend on complex

structure...
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Our present program...

Build monad bundles with F-term and D-term obstructions

Analyze the vacuum space

Systematically construct all TS dual geometries

o Compare...

Note: Counting is easiest... so begin w/ examples that lift, rather than

just constrain moduli

o Caveat: Many interesting questions to ask of the GLSM, for this talk I
will focus solely on comparing the target space theories generated in the

geometric phases.
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D-term Example

xj r A? Py
11 0 0 0 0 -2 1 -1 0 0 2 1 1 2 -3 -1 =2
o 0 1 1 1 1 —4 -1 1 11 1 2 2 2 -2 -4 -3

with initial total moduli count
dim(Mo) = hYH(X) + h*1(X) + h* (X, Endo(V)) = 2 + 86 + 340 = 428

What is the effective target space theory in the geometric phase?
e Naively: rk(V) =5, c1(V) =0 = SU(5) 4D theory.
@ Not so fast though...Mixed positive/negative entries in A? indicate
sub-sheaves.
o In fact, V stable only on a ray in Kahler moduli space t? = 4t'.

@ Only supersymmetric configuration of V: V — U3 & L@ LY w/
L=0(1,-1).
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@ Non-Abelian Enhancement: Structure group is not SU(5), rather

S[U(1) x U(1)] x SU(3) C Es = SU(6) x U(1), with U(1) symmetry

Green-Schwarz massive.

Field Cohom. Multiplicity | Field Cohom. Multiplicity
| HY(L® L) 0 1, | H{(LY®LY) 10
15, HY(U3Y) 0 15, HY(Us) 80
20,, HY(L) 0 20, HY(LY) 0
6.1 | H(L® Us) 72 1| HY(LY ® Us) 90
6., | HY(L® UsY) 0 6., | H(LY @ U3Y) 2
1, | HY(Us® UsY) 166
Table : Particle content of the SU(6) x U(1) theory associated to the bundle along its

reducible and poly-stable locus V = O(—1,1)® O(1,—1) @ Us (i.e. on the stability wall).
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Features of interest

o Non-trivial D-term lifts one Kahler modulus. Reduction in moduli
dim(My) = dim(M,) — 1 = 427
@ Bundle forced to locus w/ non-Abelian symmetry enhancement

o From the stability wall, can explore branch structure into nearby

geometries.
o How much of this is visible in the TS duals?

@ In this case can construct a chain of 17 TS dual geometries w/

conifold-type “splits” — A1 4+ 1. What do we get?...
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TS dual of D-term e.g.

One example:

X r A? Py
00 0 0 0 0 1 1 -1 -1 0 0 1 00 0 0 0 0 0 -1
11 0 0 0 0 0 0 -2 0 1 -1 0 0 2 1 1 2 -3 -1 =2
0 0 1 1 1 1 0 0 -2 -2 -1 1 -1 1 3 2 2 2 -2 -4 -3

Questions:
@ Does (X, V) give rise to a stability wall?
@ What is dim(M,)? Is dim(M;) reduced by the same amount?

© Does the structure group of V reduce as well, leading to a 4-dimensional

non-Abelian enhancement of symmetry?
@ Do the charged matter spectra of the two theories match?

@ Does the vacuum branch structure (i.e. local deformation space)

correspond?
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TS Dual

o First pass yields a discrepancy...
dim(Mo) = ht1(X) + h21(X) + hL(X, Endo(V)) = 3 + 55 + 371 = 429

@ However, this isn’t quite the right count. Three de-stabilizing sub-sheaves
for V. Stability condition on the wall reduces free Kéhler moduli by 2
(two D-terms). = dim(M;) = 427. Agreement!

e Once again, V is forced to be reducible: V — (L; & LY) @ (L, @ Uh)

@ Structure group is S[U(1) x U(1)] x S[U(1) x U(2)] =
SU(6) x U(1) x U(1) w/ both U(1)s GS massive.

o First three questions manifestly answered in the positive!
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Field Cohom. Multiplicity | Field Cohom. Multiplicity
1,00 | HYL  ® L) 0 1,0 | H(LY ®LY) 10
150, HY(Uy) 0 150,41 HY(0,) 80
150 1> HY(LY) 0 15, HY (L) 0
20,1, HY(L;) 0 20 ;0 HY(LY) 0
6.1 o | H (L1 ®Ly) 0 6.1 2| HYLY ® L) 0
6.11 | H(L® ) 72 6141 | H(LY © Oy) 90
6.1 1 | HY(L, ® Uy) 0 6., 1 | H(LY @ Uy) 0
6.0 | H(Li®LY 0 6_1.0 | HY(LY ® L) 2
loo | HY(Dh® OY) 99 lo—s | HY(L® Uy) 0
1o3 | HY(LY ® Uy) 98

Table : Particle content of the SU(6) x U(1) x U(1) theory <+ V =L@ LY ® L, ® 0.
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Branch Structure

@ Various branches. E.g. Search for breaking: SU(6) — SU(5) stable off the
wall. (L+ LY 4+ U; — Vs)

puw 3 eser’ (L)
s 16 ke2V

1
Dl ~ 5 (=8 Cer,s* + (=5)| Cor, =5 + (+5) €1 5]7)

1
= 5 (2120 + (+DICh, =5 + (~DICo1 = + (-1 Cor i)

D-flat solns require p(L) < 0 = One-sided stability chamber

@ Can show that this branch is described via
Xi i A2 P
1 1 0 0 0 0 -2 1 0 0 0 0 2 1 1 2 —1 -3 —1 -2
0 0 1 1 1 1 —4 -1 1 1 1 1 1 2 2 2 —1 -2 —4 -3

@ Shares the reducible (wall) locus L+ LY + Us with

0—L—0(0,1)% - 0O(1,1) =0

dim(Mo) = dim(My) = h1(X) + h>1(X) + h'(Endo(V)) = 2 + 86 + 338 =
426
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TS Dual and branches

@ Again, search for a branch SU(6) — SU(5)

2
u@ 3 eserTm(£y) 1 2 2 2 2
D) ~ = SEEEL (221 0,002 + (41 €41 41,512 + (~DIC_1 11, —s1 + (-DIC 1 12, 451%)
16 K42V 2
2
u(1) 3 egepu(£2) 1 2 2 2 2
Dgsy ~ B m2v 2 ((+3)\Co,+3,o| + (+F)IC1, 41, —517 + (F)IC_1 41, —517 + (+2)[C—1 42, 45] )

1
5”&2) ~5 ((*5)\C+1,+1,—5|2 +(=5)IC_1, 11,5/ +(+5)\C—1,+2,+5\2)

@ Again, one such branch w/ p(Lz) > 0 and u(L;) <0

@ Described via the new monad

X r A2 Py
0 0 0 0 0 0 1 1 —1 —1 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 -2 0 1 0 0 0 0 2 1 1 2 —1 -3 —1
0 0 1 1 1 1 0 0 -2 -2 —1 1 1 —1 1 3 2 2 2 —1 -2 —4

Again dim(M) = 426 and SU(5) charged matter match exactly.
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Branch Structure

@ Even more exciting, we now have many examples where we can describe

all branches via monads. In general, find commutative diagram:

dual
Vl ua

() 1 L (0

dual T
v, &5V,

@ Only intriguing exceptions: In some cases stability wall in TS dual is
located on the boundary of Kihler moduli space (i.e. some t' = 0, but
Vol(X) >> 0). Here effective theories difficult to compare.

Perturbative/non-perturbative duality?...
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F-term Example

e What about e.g.s w/ holomorphy obstructions? (i.e. F-term lifting)? For
this we have to work a little harder...

e Consider the SU(2) bundle

X

r A2 p

@ Does not define a stable bundle for general choices of complex structure:
Missing a map F{ € H%(X,O(—2,4) = 0 generically. However, line bundle
cohomology can jump...

@ Shown in (arXiv:1107.5076) that on a 53-dim. sublocus of CS moduli
space, h°(X,0(-2,4) = 1. = dim(M;) = dim(M,) — 33.

@ But... also proved that when X <> X connected via geometric transitions,

dim(jumping locus)= dim(CSjump N CSshared)
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Target Space Dual theory of F-term example

x; rJ A? Py
o 0o 0 0 0 0 1 1 -1 -1 0 1 0 -1
11 0 0 0 0 0 0 -1 -1 2 -2 0 0
o 0 1 1 1 1 0 0 -2 =2 0 0 4 —4

o Fortunately, new bundle V now involves two jumping map components.
KO(X,0(0,—2,4)) = 1 fixes 15 CS moduli
hO(X,0(1,—2,4)) = 1 fixes 18 CS moduli

Stability walls form chamber structure but do not lift moduli.

In total dim(Mi) = dim(My) — 33 as required!

°
@ Charged matter spectra also agree.
o Fine print: easy e.g. but cx(V) # c2( TX), need to add a spectator
Xi r A? p
1 1 0 0 0 0 -2 0 0 2 2 -2 -2
0 0 1 1 1 1 —4 1 1 1 1 -2 -2
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Conclusions and Future work

@ In many non-trivial cases, we have found that not just the matter
spectrum, but the effective potentials and vacuum spaces of the target

space dual theories agree.

@ We have found new evidence that target space duality may give hints

towards a true (0,2) string duality...
o Can we establish a deeper isomorphism between sigma models?
@ Many open questions to explore in the GLSMs...
@ Intriguing to carry this analysis further, calculate Yukawa couplings, etc.

o Links to other string dualities?
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